A Deep Learning-Based Innovative Points Extraction Method

被引:0
|
作者
Yu, Tao [1 ]
Wang, Rui [1 ]
Zhan, Hongfei [1 ]
Lin, Yingjun [2 ]
Yu, Junhe [1 ]
机构
[1] Ningbo Univ, Ningbo 315000, Peoples R China
[2] Zhongyin Ningbo Battery Co Ltd, Ningbo 315040, Peoples R China
基金
国家重点研发计划;
关键词
Information extraction; Deep learning; Word embedding; Text classification; Class imbalance problem;
D O I
10.1007/978-3-031-20738-9_16
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most of the research on mining online reviews now focuses on the influence of reviews on consumers and the issue of sentiment analysis for analyzing consumer reviews, but few studies how to extract innovative ideas for products from review data. To this end, we propose a deep learning-based method to extract sentences with innovative ideas from a large amount of review data. First, we select a product review dataset from the Internet, and use a stacking integrated word embedding method to generate a rich semantic representation of review sentences, and then the resulting representation of each sentence will be feature extraction by a bidirectional gated recurrent unit (BiGRU) model combined with self-attention mechanism, and finally the extracted features are classified into innovative sentences through softmax. The method proposed in this paper can efficiently and accurately extract innovative sentences from class-imbalanced review data, and our proposed method can be applied in most information extraction studies.
引用
收藏
页码:130 / 138
页数:9
相关论文
共 50 条
  • [21] Deep Learning-based Target Customer Position Extraction on Social Network
    Lv Hai-xia
    Yu Guang
    Tian Xian-yun
    Wu Gang
    2014 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (ICMSE), 2014, : 590 - 595
  • [22] Melanoma Classification Approach with Deep Learning-Based Feature Extraction Models
    dos Santos, Alan R. F.
    Aires, Kelson R. T.
    das C Filho, I. Francisco
    de Sousa, Leonardo P.
    Veras, Rodrigo de M. S.
    Neto, Laurindo de S. B.
    Neto, Antonio L. de M.
    2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,
  • [23] A deep learning-based CEP rule extraction framework for IoT data
    Mehmet Ulvi Simsek
    Feyza Yildirim Okay
    Suat Ozdemir
    The Journal of Supercomputing, 2021, 77 : 8563 - 8592
  • [24] A Deep Learning-Based Feature Extraction Framework for System Security Assessment
    Sun, Mingyang
    Konstantelos, Ioannis
    Strbac, Goran
    IEEE TRANSACTIONS ON SMART GRID, 2019, 10 (05) : 5007 - 5020
  • [25] A deep learning-based CEP rule extraction framework for IoT data
    Simsek, Mehmet Ulvi
    Yildirim Okay, Feyza
    Ozdemir, Suat
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (08): : 8563 - 8592
  • [26] Deep Learning-Based Approach for Heat Transfer Efficiency Prediction with Deep Feature Extraction
    Shi, Yuanhao
    Li, Mengwei
    Wen, Jie
    Yang, Yanru
    Zeng, Jianchao
    ACS OMEGA, 2022, 7 (35): : 31013 - 31035
  • [27] Deep Learning-Based Segmentation for the Extraction of Micro-Doppler Signatures
    Martinez, Javier
    Vossiek, Martin
    2018 15TH EUROPEAN RADAR CONFERENCE (EURAD), 2018, : 190 - 193
  • [28] Deep Learning-based Texture Feature Extraction Technique for Face Annotation
    Kasthuri, A.
    Suruliandi, A.
    Poongothai, E.
    Raja, S. P.
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2025,
  • [29] Deep learning-based image segmentation for instantaneous flame front extraction
    Straessle, Ruben M.
    Faldella, Filippo
    Doll, Ulrich
    EXPERIMENTS IN FLUIDS, 2024, 65 (06)
  • [30] A Learning-Based Resegmentation Method for Extraction of Buildings in Satellite Images
    Dikmen, Mehmet
    Halici, Ugur
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (12) : 2150 - 2153