Understanding the phase stability of yttria stabilized zirconia electrolyte under solid oxide electrolysis cell operation conditions

被引:2
|
作者
Kim, Seong Kyun [1 ,2 ]
Lee, Hyeon Jin [1 ]
Moon, Jin Young [3 ]
Jo, Yong-Ryun [3 ]
Lee, Jinsil [1 ,2 ]
Park, Ji-Hoon [1 ]
Kim, Sun-Dong [4 ]
Joo, Jong Hoon [1 ,2 ]
机构
[1] Gwangju Inst Sci & Technol, Sch Earth Sci & Environm Engn, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
[2] Gwangju Inst Sci & Technol, Res Ctr Innovat Energy & Carbon Optimized Synth C, 123 Cheomdan Gwagiro, Gwangju 61005, South Korea
[3] GCRF GIST Cent Res Facil, 123 Cheomdangwagi Ro, Gwangju 61005, South Korea
[4] Korea Inst Energy Res, Hydrogen Convergence Mat Lab, 152 Gajeong Ro, Daejeon 34129, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTRICAL-CONDUCTIVITY; TRANSFORMATION; DEGRADATION; COATINGS; RAMAN;
D O I
10.1039/d3ta06652e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid oxide electrolysis cells (SOECs) have garnered interest as efficient systems for hydrogen production through water electrolysis. One critical limitation hindering the widespread adoption of this technology is the long-term degradation of electrodes. In addition, ensuring the durability of the electrolyte remains a significant challenge. This study delves into the degradation mechanism of yttria-stabilized zirconia (YSZ) with varying Y2O3 compositions under an applied electric potential. In a comprehensive investigation of the degradation behavior of YSZ electrolytes with Y2O3 doping ranging between 8 and 10 mol%, the 8YSZ composition exhibited a pronounced reduction in ionic conductivity compared to 9.5YSZ and 10YSZ. Although 8YSZ exhibits the highest ionic conductivity, it has been determined that, under SOEC operating conditions, a Y2O3 doping concentration exceeding 8 mol% is required for stability owing to the precipitation around the electrode induced by the electric field. Electrical analysis, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy were utilized to assess the degradation behavior of the electrolyte. K-means clustering was applied to highlight the disorder in defects observed through energy-dispersive spectroscopy. This study elucidates the underlying mechanisms governing electrolyte degradation in SOECs and recommends optimal YSZ compositions for prolonged operation, considering thermal stability and durability under SOEC operating conditions. The degradation mechanism of yttria-stabilized zirconia (YSZ) with varying Y2O3 compositions under an applied electric potential.
引用
收藏
页码:8319 / 8330
页数:12
相关论文
共 50 条
  • [21] Stainless Steel/Yttria Stabilized Zirconia Composite Supported Solid Oxide Fuel Cell
    Molin, Sebastian
    Tolczyk, Mateusz
    Gazda, Maria
    Jasinski, Piotr
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2011, 8 (05):
  • [22] Investigation of the electrochemical property of solid oxide fuel cells with sputtered yttria-stabilized zirconia electrolyte
    Lin, Tai-Nan
    Lee, Maw-Chwain
    Lee, Ruey-Yi
    Shiu, Yaw-Hua
    Kao, Wei-Xin
    Chang, Yang-Chuang
    Wang, Chun-Hsiu
    THIN SOLID FILMS, 2016, 618 : 195 - 201
  • [23] A porous yttria-stabilized zirconia layer to eliminate the delamination of air electrode in solid oxide electrolysis cells
    Khan, Muhammad Shirjeel
    Xu, Xiaoyong
    Zhao, Jie
    Knibbe, Ruth
    Zhu, Zhonghua
    JOURNAL OF POWER SOURCES, 2017, 359 : 104 - 110
  • [24] Electrochemical characterization of Ni-yttria stabilized zirconia electrode for hydrogen production in solid oxide electrolysis cells
    Dasari, Hari Prasad
    Park, Sun-Young
    Kim, Jeonghee
    Lee, Jong-Ho
    Kim, Byung-Kook
    Je, Hae-June
    Lee, Hae-Weon
    Yoon, Kyung Joong
    JOURNAL OF POWER SOURCES, 2013, 240 : 721 - 728
  • [25] Nitrogen oxide sensors based on yttria-stabilized zirconia electrolyte and oxide electrodes
    Mukundan, Rangachary
    Teranishi, Kazuhiro
    Brosha, Eric L.
    Garzon, Fernando H.
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (02) : J26 - J29
  • [26] Yttria stabilized zirconia microtubes for microfluidics under extreme conditions
    Taette, T.
    Part, M.
    Talviste, R.
    Hanschmidt, K.
    Utt, K.
    Maeeorg, U.
    Jogi, I.
    Kiisk, V.
    Maendar, H.
    Nurk, G.
    Rauwel, P.
    RSC ADVANCES, 2014, 4 (34) : 17413 - 17419
  • [27] Phase stability of scandia-yttria-stabilized zirconia TBCs
    Leoni, M
    Jones, RL
    Scardi, P
    SURFACE & COATINGS TECHNOLOGY, 1998, 108 (1-3): : 107 - 113
  • [28] Accelerated degradation of yttria stabilized zirconia electrolyte during high-temperature water electrolysis
    Nechache, Aziz
    Boukamp, Bernard A.
    Cassir, Michel
    Ringuede, Armelle
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (03) : 871 - 881
  • [29] Accelerated degradation of yttria stabilized zirconia electrolyte during high-temperature water electrolysis
    Aziz Nechache
    Bernard A. Boukamp
    Michel Cassir
    Armelle Ringuedé
    Journal of Solid State Electrochemistry, 2019, 23 : 871 - 881
  • [30] Porous Nickel Based Half-Cell Solid Oxide Fuel Cell and Thin-Film Yttria-Stabilized Zirconia Electrolyte
    Umirzakov, A. G.
    Mereke, A. L.
    Shaikenova, A. A.
    Rakhmetov, B. A.
    Yeleuov, M. A.
    Beisenov, R. E.
    Ebrahim, R.
    Mansurov, B. A.
    EURASIAN CHEMICO-TECHNOLOGICAL JOURNAL, 2021, 23 (01) : 9 - 17