Registry-dependent potential energy and lattice corrugation of twisted bilayer graphene from quantum Monte Carlo

被引:1
|
作者
Krongchon, Kittithat [1 ]
Rakib, Tawfiqur [2 ]
Pathak, Shivesh [3 ]
Ertekin, Elif [2 ,4 ]
Johnson, Harley T. [2 ,5 ]
Wagner, Lucas K. [1 ]
机构
[1] Univ Illinois, Inst Condensed Matter Theory, Dept Phys, Urbana, IL 61801 USA
[2] Univ Illinois Urbana & Champaign, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[3] Sandia Natl Labs, Albuquerque, NM 87185 USA
[4] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Mat Sci & Engn, Urbana, IL 61801 USA
关键词
VAN-DER-WAALS; DENSITY FUNCTIONALS; MOIRE; DIFFUSION; BINDING; FORCES; DIMER;
D O I
10.1103/PhysRevB.108.235403
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An uncertainty in studying twisted bilayer graphene (TBG) is the minimum-energy geometry, which strongly affects the electronic structure. The minimum-energy geometry is determined by the potential-energy surface, which is dominated by van der Waals (vdW) interactions. In this paper, large-scale diffusion quantum Monte Carlo (QMC) simulations are performed to evaluate the energy of bilayer graphene at various interlayer distances for four stacking registries. An accurate registry-dependent potential is fit to the QMC data and is used to describe interlayer interactions in the geometry of near-magic-angle TBG. The band structure for the optimized geometry is evaluated using the accurate local-environment tight-binding model. We find that compared to QMC, DFTbased vdW interactions can result in errors in the corrugation magnitude by a factor of 2 or more near the magic angle. The error in corrugation then propagates to the flat bands in twisted bilayer graphene, where the error in corrugation can affect the bandwidth by about 30% and can change the nature and degeneracy of the flat bands.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Energy levels and Aharonov-Bohm oscillations in twisted bilayer graphene quantum dots and rings
    Bandeira, N. S.
    Chaves, Andrey
    de Castro, L. V.
    Costa Filho, R. N.
    Mirzakhani, M.
    Peeters, F. M.
    da Costa, D. R.
    PHYSICAL REVIEW B, 2025, 111 (12)
  • [22] Nonlocal density interactions in auxiliary-field quantum Monte Carlo simulations: Application to the square lattice bilayer and honeycomb lattice
    Golor, Michael
    Wessel, Stefan
    PHYSICAL REVIEW B, 2015, 92 (19)
  • [23] Lattice collective modes from a continuum model of magic-angle twisted bilayer graphene
    Kumar, Ajesh
    Xie, Ming
    MacDonald, A. H.
    PHYSICAL REVIEW B, 2021, 104 (03)
  • [24] Polarization-Dependent Selection Rules and Optical Spectrum Atlas of Twisted Bilayer Graphene Quantum Dots
    Wang, Yunhua
    Yu, Guodong
    Rosner, Malte
    Katsnelson, Mikhail I.
    Lin, Hai-Qing
    Yuan, Shengjun
    PHYSICAL REVIEW X, 2022, 12 (02)
  • [25] Electrically controllable magnetic order in the bilayer Hubbard model on honeycomb lattice: A determinant quantum Monte Carlo study
    Sun, Jinhua
    Xu, Dong-Hui
    Zhou, Yi
    Zhang, Fu-Chun
    PHYSICAL REVIEW B, 2014, 90 (12)
  • [26] Quantum Monte Carlo with density matrix: potential energy curve derived properties
    Víctor S. Bonfim
    Nádia M. Borges
    João B. L. Martins
    Ricardo Gargano
    José Roberto dos S. Politi
    Journal of Molecular Modeling, 2017, 23
  • [27] Quantum Monte Carlo with density matrix: potential energy curve derived properties
    Bonfim, Victor S.
    Borges, Nadia M.
    Martins, Joao B. L.
    Gargano, Ricardo
    Politi, Jose Roberto dos S.
    JOURNAL OF MOLECULAR MODELING, 2017, 23 (04)
  • [28] Binding of hydrogen on benzene, coronene, and graphene from quantum Monte Carlo calculations
    Ma, Jie
    Michaelides, Angelos
    Alfe, Dario
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (13):
  • [29] Non-Abelian effective mechanism from layer pseudospin and lattice pseudospin in twisted bilayer graphene
    Liu, Zheng
    Zhang, Chao
    Cao, J. C.
    PHYSICAL REVIEW B, 2021, 104 (04)
  • [30] Quantum Monte Carlo calculations of energy gaps from first principles
    Hunt, R. J.
    Szyniszewski, M.
    Prayogo, G. I.
    Maezono, R.
    Drummond, N. D.
    PHYSICAL REVIEW B, 2018, 98 (07)