Dynamics of a Thermoelastic Balakrishnan-Taylor Beam Model with Fractional Operators

被引:0
|
作者
Tavares, Eduardo H. Gomes [1 ]
Silva, Marcio A. Jorge [2 ]
Li, Yanan [3 ]
Narciso, Vando [4 ]
Yang, Zhijian [5 ]
机构
[1] Fed Univ Para, Dept Math, BR-66075110 Belem, PA, Brazil
[2] Univ Estadual Londrina, Dept Math, BR-86057970 Londrina, PR, Brazil
[3] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
[4] Univ Estadual Mato Grosso do Sul, Ctr Exact & Technol Sci, BR-79804970 Dourados, MS, Brazil
[5] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2024年 / 89卷 / 01期
基金
中国国家自然科学基金;
关键词
Attractors; Balakrishnan-Taylor; Rotational inertia; Thermoelastic beam; EXTENSIBLE BEAM; ATTRACTORS; STABILITY; EXISTENCE; BEHAVIOR; EQUATION;
D O I
10.1007/s00245-023-10086-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper contains new results about the well-posedness and the asymptotic dynamics of solutions for a general abstract coupled system that arises in connection with thermoelastic Balakrishnan-Taylor beam models with fractional operators.
引用
收藏
页数:37
相关论文
共 50 条
  • [21] Existence and decay rates for a coupled Balakrishnan-Taylor viscoelastic system with dynamic boundary conditions
    Feng, Baowei
    Soufyane, Abdelaziz
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (06) : 3375 - 3391
  • [22] General decay rate for a viscoelastic wave equation with distributed delay and Balakrishnan-Taylor damping
    Choucha, Abdelbaki
    Boulaaras, Salah
    Ouchenane, Djamel
    OPEN MATHEMATICS, 2021, 19 (01): : 1120 - 1133
  • [23] Asymptotic stability of a viscoelastic problem with Balakrishnan-Taylor damping and time-varying delay
    Kang, Jum-Ran
    Lee, Mi Jin
    Park, Sun Hye
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (06) : 1506 - 1515
  • [24] Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan-Taylor type
    Cavalcanti, M. M.
    Cavalcanti, V. N. Domingos
    Silva, M. A. Jorge
    Narciso, V
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 290 : 197 - 222
  • [25] Existence and exponential decay of the Dirichlet problem for a nonlinear wave equation with the Balakrishnan-Taylor term*
    Ngoc, Le Thi Phuong
    Nhan, Nguyen Huu
    Nam, Bui Duc
    Long, Nguyen Thanh
    LITHUANIAN MATHEMATICAL JOURNAL, 2020, 60 (02) : 225 - 247
  • [26] Uniform stability of a strong time-delayed viscoelastic system with Balakrishnan-Taylor damping
    Li, Haiyan
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [27] 具Balakrishnan-Taylor阻尼的Kirchhoff方程解的渐近性
    张宏伟
    张文秀
    呼青英
    应用泛函分析学报, 2018, 20 (03) : 227 - 235
  • [28] Exponential stability of extensible beams equation with Balakrishnan-Taylor, strong and localized nonlinear damping
    Hajjej, Zayd
    SEMIGROUP FORUM, 2024, 108 (02) : 391 - 412
  • [29] General decay of nonlinear viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping and logarithmic nonlinearity
    Boulaaras, Salah
    Draifia, Alaeddin
    Zennir, Khaled
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (14) : 4795 - 4814
  • [30] General decay result of solutions for viscoelastic wave equation with Balakrishnan-Taylor damping and a delay term
    Gheraibia, Billel
    Boumaza, Nouri
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):