Dynamics of a Thermoelastic Balakrishnan-Taylor Beam Model with Fractional Operators

被引:0
|
作者
Tavares, Eduardo H. Gomes [1 ]
Silva, Marcio A. Jorge [2 ]
Li, Yanan [3 ]
Narciso, Vando [4 ]
Yang, Zhijian [5 ]
机构
[1] Fed Univ Para, Dept Math, BR-66075110 Belem, PA, Brazil
[2] Univ Estadual Londrina, Dept Math, BR-86057970 Londrina, PR, Brazil
[3] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
[4] Univ Estadual Mato Grosso do Sul, Ctr Exact & Technol Sci, BR-79804970 Dourados, MS, Brazil
[5] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
来源
APPLIED MATHEMATICS AND OPTIMIZATION | 2024年 / 89卷 / 01期
基金
中国国家自然科学基金;
关键词
Attractors; Balakrishnan-Taylor; Rotational inertia; Thermoelastic beam; EXTENSIBLE BEAM; ATTRACTORS; STABILITY; EXISTENCE; BEHAVIOR; EQUATION;
D O I
10.1007/s00245-023-10086-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper contains new results about the well-posedness and the asymptotic dynamics of solutions for a general abstract coupled system that arises in connection with thermoelastic Balakrishnan-Taylor beam models with fractional operators.
引用
收藏
页数:37
相关论文
共 50 条
  • [1] Dynamics of a Thermoelastic Balakrishnan–Taylor Beam Model with Fractional Operators
    Eduardo H. Gomes Tavares
    Marcio A. Jorge Silva
    Yanan Li
    Vando Narciso
    Zhijian Yang
    Applied Mathematics & Optimization, 2024, 89
  • [2] Long-Time Dynamics of Balakrishnan-Taylor Extensible Beams
    Gomes Tavares, E. H.
    Jorge Silva, M. A.
    Narciso, V.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (03) : 1157 - 1175
  • [3] Asymptotic behavior of a Balakrishnan-Taylor suspension bridge
    Hajjej, Zayd
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (03): : 1646 - 1662
  • [4] On a system of nonlinear wave equations with Balakrishnan-Taylor damping
    Mu, Chunlai
    Ma, Jie
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 91 - 113
  • [5] On the exponential decay of a Balakrishnan-Taylor plate with strong damping
    Hajjej, Zayd
    AIMS MATHEMATICS, 2024, 9 (06): : 14026 - 14042
  • [6] ON THE VISCOELASTIC EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING AND ACOUSTIC BOUNDARY CONDITIONS
    Ha, Tae Gab
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2018, 7 (02): : 281 - 291
  • [7] GENERAL DECAY OF SOLUTIONS FOR A VISCOELASTIC EQUATION WITH BALAKRISHNAN-TAYLOR DAMPING
    Wu, Shun-Tang
    TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (02): : 553 - 566
  • [8] EXPONENTIAL STABILITY AND BLOW UP FOR A PROBLEM WITH BALAKRISHNAN-TAYLOR DAMPING
    Tatar, Nasser-eddine
    Zaraie, Abderrahmane
    DEMONSTRATIO MATHEMATICA, 2011, 44 (01) : 67 - 90
  • [9] Asymptotic stability of a problem with Balakrishnan-Taylor damping and a time delay
    Lee, Mi Jin
    Park, Jong Yeoul
    Kang, Yong Han
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (04) : 478 - 487
  • [10] GLOBAL EXISTENCE AND POLYNOMIAL DECAY FOR A PROBLEM WITH BALAKRISHNAN-TAYLOR DAMPING
    Zarai, Abderrahmane
    Tatar, Nasser-Eddine
    ARCHIVUM MATHEMATICUM, 2010, 46 (03): : 157 - 176