Multi-label borderline oversampling technique

被引:10
|
作者
Teng, Zeyu [1 ]
Cao, Peng [2 ,3 ]
Huang, Min [1 ]
Gao, Zheming [1 ]
Wang, Xingwei [2 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Liaoning, Peoples R China
[2] Northeastern Univ, Coll Comp Sci & Engn, Shenyang 110169, Liaoning, Peoples R China
[3] Northeastern Univ, Key Lab Intelligent Comp Med Image, Minist Educ, Shenyang 110169, Liaoning, Peoples R China
关键词
Multi-label learning; Class imbalance; Borderline sample; Oversampling; CLASSIFICATION; IMBALANCE; RANKING; MACHINE; SMOTE;
D O I
10.1016/j.patcog.2023.109953
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Class imbalance problem commonly exists in multi-label classification (MLC) tasks. It has non-negligible im-pacts on the classifier performance and has drawn extensive attention in recent years. Borderline oversampling has been widely used in single-label learning as a competitive technique in dealing with class imbalance. Nevertheless, the borderline samples in multi-label data sets (MLDs) have not been studied. Hence, this paper deeply discussed the borderline samples in MLDs and found they have different neighboring relationships with class borders, which makes their roles different in the classifier training. For that, they are divided into two types named the self-borderline samples and the cross-borderline samples. Further, a novel MLDs resampling approach called Multi-Label Borderline Oversampling Technique (MLBOTE) is proposed for multi -label imbalanced learning. MLBOTE identifies three types of seed samples, including interior, self-borderline, and cross-borderline samples, and different oversampling mechanisms are designed for them, respectively. Meanwhile, it regards not only the minority classes but also the classes suffering from one-vs-rest imbalance as those in need of oversampling. Experiments on eight data sets with nine MLC algorithms and three base classifiers are carried out to compare MLBOTE with some state-of-art MLDs resampling techniques. The results show MLBOTE outperforms other methods in various scenarios.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Multi-label learning with multi-label smoothing regularization for vehicle re-identification
    Hou, Jinhui
    Zeng, Huanqiang
    Cai, Lei
    Zhu, Jianqing
    Chen, Jing
    Ma, Kai-Kuang
    NEUROCOMPUTING, 2019, 345 : 15 - 22
  • [22] Multi-label Annotation in Scientific Articles - The Multi-label Cancer Risk Assessment Corpus
    Ravenscroft, James
    Oellrich, Anika
    Saha, Shyamasree
    Liakata, Maria
    LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 4115 - 4123
  • [23] Calibrated Multi-label Classification with Label Correlations
    Zhi-Fen He
    Ming Yang
    Hui-Dong Liu
    Lei Wang
    Neural Processing Letters, 2019, 50 : 1361 - 1380
  • [24] Partial Multi-Label Learning with Label Distribution
    Xu, Ning
    Liu, Yun-Peng
    Geng, Xin
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6510 - 6517
  • [25] Robust label compression for multi-label classification
    Zhang, Ju-Jie
    Fang, Min
    Wu, Jin-Qiao
    Li, Xiao
    KNOWLEDGE-BASED SYSTEMS, 2016, 107 : 32 - 42
  • [26] Calibrated Multi-label Classification with Label Correlations
    He, Zhi-Fen
    Yang, Ming
    Liu, Hui-Dong
    Wang, Lei
    NEURAL PROCESSING LETTERS, 2019, 50 (02) : 1361 - 1380
  • [27] An oversampling algorithm of multi-label data based on cluster-specific samples and fuzzy rough set theory
    Liu, Jinming
    Huang, Kai
    Chen, Chen
    Mao, Jian
    COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (05) : 6267 - 6282
  • [28] Exploitation of Label Relationship in Multi-Label Learning
    Zhou, Zhi-Hua
    2012 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING (GRC 2012), 2012, : 19 - 19
  • [29] Label prompt for multi-label text classification
    Song, Rui
    Liu, Zelong
    Chen, Xingbing
    An, Haining
    Zhang, Zhiqi
    Wang, Xiaoguang
    Xu, Hao
    APPLIED INTELLIGENCE, 2023, 53 (08) : 8761 - 8775
  • [30] Asymmetry label correlation for multi-label learning
    Jiachao Bao
    Yibin Wang
    Yusheng Cheng
    Applied Intelligence, 2022, 52 : 6093 - 6105