Graph Convolution Neural Network Based End-to-End Channel Selection and Classification for Motor Imagery Brain-Computer Interfaces

被引:43
|
作者
Sun, Biao [1 ]
Liu, Zhengkun [1 ]
Wu, Zexu [1 ]
Mu, Chaoxu [1 ]
Li, Ting [2 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Chinese Acad Med Sci & Peking Union Med Coll, Inst Biomed Engn, Tianjin 300192, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain computer interface (BCI); channel selection; graph convolutional network (GCN); motor imagery (MI); EEG;
D O I
10.1109/TII.2022.3227736
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Classification of electroencephalogram-based motor imagery (MI-EEG) tasks is crucial in brain-computer interface (BCI). EEG signals require a large number of channels in the acquisition process, which hinders its application in practice. How to select the optimal channel subset without a serious impact on the classification performance is an urgent problem to be solved in the field of BCIs. This article proposes an end-to-end deep learning framework, called EEG channel active inference neural network (EEG-ARNN), which is based on graph convolutional neural networks (GCN) to fully exploit the correlation of signals in the temporal and spatial domains. Two channel selection methods, i.e., edge-selection (ES) and aggregation-selection (AS), are proposed to select a specified number of optimal channels automatically. Two publicly available BCI Competition IV 2a (BCICIV 2a) dataset and PhysioNet dataset and a self-collected dataset (TJU dataset) are used to evaluate the performance of the proposed method. Experimental results reveal that the proposed method outperforms state-of-the-art methods in terms of both classification accuracy and robustness. Using only a small number of channels, we obtain a classification performance similar to that of using all channels. Finally, the association between selected channels and activated brain areas is analyzed, which is important to reveal the working state of brain during MI.
引用
收藏
页码:9314 / 9324
页数:11
相关论文
共 50 条
  • [21] End-to-end autonomous driving based on the convolution neural network model
    Zhao, Yuanfang
    Chen, Yunli
    2019 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2019, : 419 - 423
  • [22] CS-Net: An End-to-end Network for Motor Imagery Brain-Machine Interface with Adaptive Channel Selection and Compressed Sensing
    Lu, Jie
    Yu, Guanghan
    Qian, Liyu
    Cao, Jiacheng
    Zheng, Lirong
    Zou, Zhuo
    2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024, 2024, : 582 - 586
  • [23] Motor Imagery-based Brain-Computer Interface: Neural Network Approach
    Lazurenko, D. M.
    Kiroy, V. N.
    Shepelev, I. E.
    Podladchikova, L. N.
    OPTICAL MEMORY AND NEURAL NETWORKS, 2019, 28 (02) : 109 - 117
  • [24] Motor Imagery-based Brain-Computer Interface: Neural Network Approach
    D. M. Lazurenko
    V. N. Kiroy
    I. E. Shepelev
    L. N. Podladchikova
    Optical Memory and Neural Networks, 2019, 28 : 109 - 117
  • [25] Subject-Specific Channel Selection Using Time Information for Motor Imagery Brain-Computer Interfaces
    Yang, Yuan
    Bloch, Isabelle
    Chevallier, Sylvain
    Wiart, Joe
    COGNITIVE COMPUTATION, 2016, 8 (03) : 505 - 518
  • [26] Feature Extraction and Classification of Motor Imagery EEG Signals in Motor Imagery for Sustainable Brain-Computer Interfaces
    Lu, Yuyi
    Wang, Wenbo
    Lian, Baosheng
    He, Chencheng
    SUSTAINABILITY, 2024, 16 (15)
  • [27] Compact convolutional neural network (CNN) based on SincNet for end-to-end motor imagery decoding and analysis
    Izzuddin, Tarmizi Ahmad
    Safri, Norlaili Mat
    Othman, Mohd Afzan
    BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2021, 41 (04) : 1629 - 1645
  • [28] A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection
    Lo, Chi-Chun
    Chien, Tsung-Yi
    Chen, Yu-Chun
    Tsai, Shang-Ho
    Fang, Wai-Chi
    Lin, Bor-Shyh
    SENSORS, 2016, 16 (02):
  • [29] A Synergy of Convolutional Neural Networks for Sensor-Based EEG Brain-Computer Interfaces to Enhance Motor Imagery Classification
    Mallat, Souheyl
    Hkiri, Emna
    Albarrak, Abdullah M.
    Louhichi, Borhen
    SENSORS, 2025, 25 (02)
  • [30] Federated Motor Imagery Classification for Privacy-Preserving Brain-Computer Interfaces
    Jia, Tianwang
    Meng, Lubin
    Li, Siyang
    Liu, Jiajing
    Wu, Dongrui
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2024, 32 : 3442 - 3451