NEHASH: high-concurrency extendible hashing for non-volatile memory

被引:1
|
作者
Cai, Tao [1 ]
Gao, Pengfei [1 ]
Niu, Dejiao [1 ]
Ma, Yueming [1 ]
Lei, Tianle [1 ]
Dai, Jianfei [1 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang 212013, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Extendible hashing; Non-volatile memory (NVM); High concurrency; TP333;
D O I
10.1631/FITEE.2200462
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Extendible hashing is an effective way to manage increasingly large file system metadata, but it suffers from low concurrency and lack of optimization for non-volatile memory (NVM). In this paper, a multilevel hash directory based on lazy expansion is designed to improve the concurrency and efficiency of extendible hashing, and a hash bucket management algorithm based on groups is presented to improve the efficiency of hash key management by reducing the size of the hash bucket, thereby improving the performance of extendible hashing. Meanwhile, a hierarchical storage strategy of extendible hashing for NVM is given to take advantage of dynamic random access memory (DRAM) and NVM. Furthermore, on the basis of the device driver for Intel Optane DC Persistent Memory, the prototype of high-concurrency extendible hashing named NEHASH is implemented. Yahoo cloud serving benchmark (YCSB) is used to test and compare with CCEH, level hashing, and cuckoo hashing. The results show that NEHASH can improve read throughput by up to 16.5% and write throughput by 19.3%.
引用
收藏
页码:703 / 715
页数:13
相关论文
共 50 条
  • [31] Embedded Non-Volatile Memory Technologies
    Shum, Danny
    CHINA SEMICONDUCTOR TECHNOLOGY INTERNATIONAL CONFERENCE 2011 (CSTIC 2011), 2011, 34 (01): : 3 - 8
  • [32] Non-volatile memory and digital clocking
    Intel, Folsom, CA, United States
    不详
    Dig Tech Pap IEEE Int Solid State Circuits Conf, 2008, (504):
  • [33] Consensus for Non-Volatile Main Memory
    Huynh Tu Dang
    Hofmann, Jaco
    Liu, Yang
    Radi, Marjan
    Vucinic, Dejan
    Soule, Robert
    Pedone, Fernando
    2018 IEEE 26TH INTERNATIONAL CONFERENCE ON NETWORK PROTOCOLS (ICNP), 2018, : 406 - 411
  • [34] Non-volatile and Flash memory developments
    Neale, R
    ELECTRONIC ENGINEERING, 2001, 73 (898): : 11 - +
  • [35] Nanocrystal non-volatile memory devices
    Horvath, Zs. J.
    Basa, P.
    THIN FILMS AND POROUS MATERIALS, 2009, 609 : 1 - 9
  • [36] Heterogeneous Index for Non-volatile Memory
    Liu R.-C.
    Zhang J.-C.
    Luo Y.-P.
    Jin P.-Q.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (03): : 832 - 848
  • [37] Resistance non-volatile memory - RRAM
    Ignatiev, Alex
    Wu, Naijuan
    Chen, Xin
    Nian, Yibo
    Papagianni, Christina
    Liu, Shangqing
    Strozier, John
    MATERIALS AND PROCESSES FOR NONVOLATILE MEMORIES II, 2007, 997 : 181 - 189
  • [38] Introduction to non-volatile memory technologies
    Asadinia, Marjan
    Sarbazi-Azad, Hamid
    DURABLE PHASE-CHANGE MEMORY ARCHITECTURES, 2020, 118 : 1 - 13
  • [39] Data Management in Non-Volatile Memory
    Viglas, Stratis D.
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 1707 - 1711
  • [40] ODOMETER USING NON-VOLATILE MEMORY
    YATES, P
    ELECTRONIC ENGINEERING, 1984, 56 (687): : 169 - 172