New conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in terms of generalized conformable fractional operators via majorization

被引:6
|
作者
Saeed, Tareq [2 ]
Khan, Muhammad Adil [1 ]
Faisal, Shah [1 ]
Alsulami, Hamed H. [2 ]
Alhodaly, Mohammed Sh. [2 ]
机构
[1] Univ Peshawar, Dept Math, Peshawar 25000, Pakistan
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Financial Math & Actuarial Sci FMAS Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
关键词
Jensen inequality; Mercer inequality; Hermite-Hadamard inequality; Holder inequality; majorization theory; REFINEMENTS; CONCAVITY; BOUNDS;
D O I
10.1515/dema-2022-0225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Hermite-Hadamard inequality is regarded as one of the most favorable inequalities from the research point of view. Currently, mathematicians are working on extending, improving, and generalizing this inequality. This article presents conticrete inequalities of the Hermite-Hadamard-Jensen-Mercer type in weighted and unweighted forms by using the idea of majorization and convexity together with generalized conformable fractional integral operators. They not only represent continuous and discrete inequalities in compact form but also produce generalized inequalities connecting various fractional operators such as Hadamard, Katugampola, Riemann-Liouville, conformable, and Rieman integrals into one single form. Also, two new integral identities have been investigated pertaining a differentiable function and three tuples. By using these identities and assuming|f'| and |f' |(q) (q > 1) as convex, we deduce bounds concerning the discrepancy of the terms of the main inequalities.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Generalized fractional inequalities of the Hermite-Hadamard type via new Katugampola generalized fractional integrals
    Omaba, M. E.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2022, 14 (02) : 475 - 484
  • [32] The Hermite-Hadamard-Mercer Type Inequalities via Generalized Proportional Fractional Integral Concerning Another Function
    Aljaaidi, Tariq A.
    Pachpatte, Deepak B.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2022, 2022
  • [33] Hermite-Hadamard type inequalities for conformable fractional integrals
    Khan, M. Adil
    Ali, T.
    Dragomir, S. S.
    Sarikaya, M. Z.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2018, 112 (04) : 1033 - 1048
  • [34] NEW CONFORMABLE FRACTIONAL HERMITE HADAMARD TYPE INEQUALITIES FOR HARMONICALLY CONVEX FUNCTIONS
    Sanli, Zeynep
    Koroglu, Tuncay
    JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 9 (06): : 77 - 91
  • [35] New fractional refinements of harmonic Hermite-Hadamard-Mercer type inequalities via support line
    Butt, S. I.
    Inam, H.
    FILOMAT, 2024, 38 (14) : 5179 - 5207
  • [36] New midpoint type Hermite-Hadamard-Mercer inequalities pertaining to Caputo-Fabrizio fractional operators
    Sahoo, Soubhagya Kumar
    Hamed, Y. S.
    Mohammed, Pshtiwan Othman
    Kodamasingh, Bibhakar
    Nonlaopon, Kamsing
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 65 : 689 - 698
  • [37] Hermite-Jensen-Mercer Type Inequalities for Caputo Fractional Derivatives
    Zhao, Jinchao
    Butt, Saad Ihsan
    Nasir, Jamshed
    Wang, Zhaobo
    Tlili, Iskander
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [38] Hermite-Hadamard-Fejer inequalities for generalized conformable fractional integrals
    Mehmood, Sikander
    Zafar, Fiza
    Yasmin, Nusrat
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (05) : 3746 - 3758
  • [39] On Hermite-Hadamard Type Inequalities Via Fractional Integral Operators
    Tunc, Tuba
    Sarikaya, Mehmet Zeki
    FILOMAT, 2019, 33 (03) : 837 - 854
  • [40] Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for p-convex functions via conformable fractional integrals
    Naila Mehreen
    Matloob Anwar
    Journal of Inequalities and Applications, 2020