On the optimal binary classifier with an application

被引:1
|
作者
Lopez-Diaz, Maria Concepcion [1 ]
Lopez-Diaz, Miguel [2 ]
Martinez-Fernandez, Sergio [3 ]
机构
[1] Univ Oviedo, Dept Matemat, C-Federico Garcia Lorca 18, E-33007 Oviedo, Spain
[2] Univ Oviedo, Dept Estadist IO & D M, C-Federico Garcia Lorca 18, E-33007 Oviedo, Spain
[3] Un Auditoria Capital & Impairments, Banco Sabadell, C-Sena 12,PI Can St Joan, Sant Cugat Del Valles 08174, Barcelona, Spain
关键词
Binary classifier; Conditional probability; Extended modelling vector; Optimal classifier; ROC and CAP curves and indexes; DIAGNOSTIC-TESTS; CUSTOMER CHURN; AREA; PERFORMANCE; CURVE; MODEL;
D O I
10.1016/j.csda.2022.107683
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The alternative accumulated improvement curve stochastic order is a criterion for the comparison of the performance of classifiers that predict binary responses. An explicit optimal classifier for this criterion is obtained. That optimal classifier has the largest ROC and CAP curves and indexes, that is, it is also optimal for the criteria based on the comparison of such curves and indexes. An application of the results to the search of the best classifier to predict clients of a bank which will make a transaction in the future is developed.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:14
相关论文
共 50 条
  • [31] KDV classifier: a novel approach for binary classification
    Sharma, Krishna Gopal
    Singh, Yashpal
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42241 - 42259
  • [32] The computational complexity of understanding binary classifier decisions
    Wäldchen S.
    Macdonald J.
    Hauch S.
    Kutyniok G.
    Journal of Artificial Intelligence Research, 2021, 70 : 351 - 3987
  • [33] STABILIZED BINARY HIERARCHIC CLASSIFIER IN CYTOPATHOLOGIC DIAGNOSIS
    BARTELS, HG
    BARTELS, PH
    BIBBO, M
    WIED, GL
    ANALYTICAL AND QUANTITATIVE CYTOLOGY AND HISTOLOGY, 1984, 6 (04): : 247 - 261
  • [34] A Quantum Binary Classifier based on Cosine Similarity
    Pastorello, Davide
    Blanzieri, Enrico
    2021 IEEE INTERNATIONAL CONFERENCE ON QUANTUM COMPUTING AND ENGINEERING (QCE 2021) / QUANTUM WEEK 2021, 2021, : 477 - 478
  • [35] An Enhanced Binary Classifier Incorporating Weighted Scores
    Virmani, Deepali
    Jain, Nikita
    Srivastav, Abhishek
    Mittal, Mahima
    Mittal, Surbhi
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2018, 8 (02) : 2853 - 2858
  • [36] A BINARY-TREE CLASSIFIER FOR SHIP TARGETS
    PARVIN, BA
    YIN, BH
    HICKMAN, RJ
    HOLBEN, RD
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 432 : 174 - 181
  • [37] Towards a Quantum-Inspired Binary Classifier
    Tiwari, Prayag
    Melucci, Massimo
    IEEE ACCESS, 2019, 7 : 42354 - 42372
  • [38] Binary Classifier Evaluation Without Ground Truth
    Fedorchuk, Maksym
    Lamiroy, Bart
    2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2017, : 145 - 150
  • [39] The Computational Complexity of Understanding Binary Classifier Decisions
    Waeldchen, Stephan
    Macdonald, Jan
    Hauch, Sascha
    Kutyniok, Gitta
    JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2021, 70 : 351 - 387
  • [40] A Binary Classifier for the Prediction of EC Numbers of Enzymes
    Cui, Hao
    Chen, Lei
    CURRENT PROTEOMICS, 2019, 16 (05) : 383 - 391