Efficient generator of mathematical expressions for symbolic regression

被引:6
|
作者
Meznar, Sebastian [1 ,2 ]
Dzeroski, Saso [1 ]
Todorovski, Ljupco [1 ,3 ]
机构
[1] Jozef Stefan Inst, Dept Knowledge Technol, Jamova Cesta 39, Ljubljana 1000, Slovenia
[2] Jozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia
[3] Univ Ljubljana, Fac Math & Phys, Jadranska 21, Ljubljana 1000, Slovenia
关键词
Symbolic regression; Equation discovery; Generative models; Variational autoencoders; Evolutionary algorithms;
D O I
10.1007/s10994-023-06400-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an approach to symbolic regression based on a novel variational autoencoder for generating hierarchical structures, HVAE. It combines simple atomic units with shared weights to recursively encode and decode the individual nodes in the hierarchy. Encoding is performed bottom-up and decoding top-down. We empirically show that HVAE can be trained efficiently with small corpora of mathematical expressions and can accurately encode expressions into a smooth low-dimensional latent space. The latter can be efficiently explored with various optimization methods to address the task of symbolic regression. Indeed, random search through the latent space of HVAE performs better than random search through expressions generated by manually crafted probabilistic grammars for mathematical expressions. Finally, EDHiE system for symbolic regression, which applies an evolutionary algorithm to the latent space of HVAE, reconstructs equations from a standard symbolic regression benchmark better than a state-of-the-art system based on a similar combination of deep learning and evolutionary algorithms.
引用
收藏
页码:4563 / 4596
页数:34
相关论文
共 50 条
  • [1] Efficient generator of mathematical expressions for symbolic regression
    Sebastian Mežnar
    Sašo Džeroski
    Ljupčo Todorovski
    Machine Learning, 2023, 112 : 4563 - 4596
  • [2] Correction to: efficient generator of mathematical expressions for symbolic regression
    Sebastian Mežnar
    Sašo Džeroski
    Ljupčo Todorovski
    Machine Learning, 2023, 112 : 5191 - 5191
  • [3] efficient generator of mathematical expressions for symbolic regression (vol 112, pg 4563, 2023)
    Meznar, Sebastian
    Dzeroski, Saso
    Todorovski, Ljupco
    MACHINE LEARNING, 2023, 112 (12) : 5191 - 5191
  • [4] Discovering Mathematical Expressions Through DeepSymNet: A Classification-Based Symbolic Regression Framework
    Wu, Min
    Li, Weijun
    Yu, Lina
    Sun, Linjun
    Liu, Jingyi
    Li, Wenqiang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 1356 - 1370
  • [5] EXTRACTING APPROPRIATE MATHEMATICAL EXPRESSIONS DEFINING MOMENT ARM RELATIONSHIPS USING SYMBOLIC REGRESSION
    Kurse, Manish U.
    Schmidt, Michael
    Lipson, Hod
    Valero-Cuevas, Francisco J.
    PROCEEDINGS OF THE ASME SUMMER BIOENGINEERING CONFERENCE, 2010, 2010, : 911 - 912
  • [6] SYMBOLIC REGRESSION OF CONDITIONAL TARGET EXPRESSIONS
    Korns, Michael F.
    GENETIC PROGRAMMING THEORY AND PRACTICE VII, 2010, : 211 - 228
  • [7] Functional-Hybrid modeling through automated adaptive symbolic regression for interpretable mathematical expressions
    Narayanan, Harini
    Bournazou, Mariano Nicolas Cruz
    Gosalbez, Gonzalo Guillen
    Butte, Alessandro
    CHEMICAL ENGINEERING JOURNAL, 2022, 430
  • [8] Efficient symbolic computation of process expressions
    Fraikin, Benoit
    Frappier, Marc
    SCIENCE OF COMPUTER PROGRAMMING, 2009, 74 (09) : 723 - 753
  • [9] Generating Mathematical Expressions for Estimation of Atomic Coordinates of Carbon Nanotubes Using Genetic Programming Symbolic Regression
    Andelic, Nikola
    Segota, Sandi Baressi
    TECHNOLOGIES, 2023, 11 (06)
  • [10] The Application of Augmented Reality in Teaching Symbolic Mathematical Expressions
    Mbalekwa, Elona
    Henney, Andre
    Ongansie, Marshall
    2024 IST-AFRICA CONFERENCE, 2024,