A Bayesian quantile joint modeling of multivariate longitudinal and time-to-event data

被引:0
|
作者
Kundu, Damitri [1 ]
Krishnan, Shekhar [2 ]
Gogoi, Manash Pratim [2 ]
Das, Kiranmoy [1 ,3 ]
机构
[1] Indian Stat Inst, Appl Stat Div, Kolkata, India
[2] Tata Med Ctr, Tata Translat Canc Res Ctr, Kolkata, India
[3] Beijing Inst Math Sci & Applicat, Beijing, Peoples R China
关键词
Acute lymphocytic leukemia (ALL); Asymmetric laplace distribution (ALD); Joint model; MCMC; Quantile regression; REGRESSION; CURE;
D O I
10.1007/s10985-024-09622-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Linear mixed models are traditionally used for jointly modeling (multivariate) longitudinal outcomes and event-time(s). However, when the outcomes are non-Gaussian a quantile regression model is more appropriate. In addition, in the presence of some time-varying covariates, it might be of interest to see how the effects of different covariates vary from one quantile level (of outcomes) to the other, and consequently how the event-time changes across different quantiles. For such analyses linear quantile mixed models can be used, and an efficient computational algorithm can be developed. We analyze a dataset from the Acute Lymphocytic Leukemia (ALL) maintenance study conducted by Tata Medical Center, Kolkata. In this study, the patients suffering from ALL were treated with two standard drugs (6MP and MTx) for the first two years, and three biomarkers (e.g. lymphocyte count, neutrophil count and platelet count) were longitudinally measured. After treatment the patients were followed nearly for the next three years, and the relapse-time (if any) for each patient was recorded. For this dataset we develop a Bayesian quantile joint model for the three longitudinal biomarkers and time-to-relapse. We consider an Asymmetric Laplace Distribution (ALD) for each outcome, and exploit the mixture representation of the ALD for developing a Gibbs sampler algorithm to estimate the regression coefficients. Our proposed model allows different quantile levels for different biomarkers, but still simultaneously estimates the regression coefficients corresponding to a particular quantile combination. We infer that a higher lymphocyte count accelerates the chance of a relapse while a higher neutrophil count and a higher platelet count (jointly) reduce it. Also, we infer that across (almost) all quantiles 6MP reduces the lymphocyte count, while MTx increases the neutrophil count. Simulation studies are performed to assess the effectiveness of the proposed approach.
引用
收藏
页码:680 / 699
页数:20
相关论文
共 50 条
  • [41] Spatial joint models through Bayesian structured piecewise additive joint modelling for longitudinal and time-to-event data
    Anja Rappl
    Thomas Kneib
    Stefan Lang
    Elisabeth Bergherr
    Statistics and Computing, 2023, 33
  • [42] FITTING JOINT MODELING OF LONGITUDINAL AND TIME-TO-EVENT DATA USING STOCHASTIC EM APPROACH
    Sabry, Dina M.
    Gad, Ahmed M.
    Mohamed, Ramadan H.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 64 (01) : 33 - 62
  • [43] Spatial joint models through Bayesian structured piecewise additive joint modelling for longitudinal and time-to-event data
    Rappl, Anja
    Kneib, Thomas
    Lang, Stefan
    Bergherr, Elisabeth
    STATISTICS AND COMPUTING, 2023, 33 (06)
  • [44] Joint longitudinal and time-to-event models for multilevel hierarchical data
    Brilleman, Samuel L.
    Crowther, Michael J.
    Moreno-Betancur, Margarita
    Novik, Jacqueline Buros
    Dunyak, James
    Al-Huniti, Nidal
    Fox, Robert
    Hammerbacher, Jeff
    Wolfe, Rory
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (12) : 3502 - 3515
  • [45] Penalized spline joint models for longitudinal and time-to-event data
    Pham Thi Thu Huong
    Nur, Darfiana
    Branford, Alan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (20) : 10294 - 10314
  • [46] Joint mixture quantile regressions and time-to-event analysis
    Dagne, Getachew A.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2022, 36 (03) : 492 - 503
  • [47] joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes
    Hickey, Graeme L.
    Philipson, Pete
    Jorgensen, Andrea
    Kolamunnage-Dona, Ruwanthi
    BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [48] Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues
    Graeme L. Hickey
    Pete Philipson
    Andrea Jorgensen
    Ruwanthi Kolamunnage-Dona
    BMC Medical Research Methodology, 16
  • [49] Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues
    Hickey, Graeme L.
    Philipson, Pete
    Jorgensen, Andrea
    Kolamunnage-Dona, Ruwanthi
    BMC MEDICAL RESEARCH METHODOLOGY, 2016, 16
  • [50] joineRML: a joint model and software package for time-to-event and multivariate longitudinal outcomes
    Graeme L. Hickey
    Pete Philipson
    Andrea Jorgensen
    Ruwanthi Kolamunnage-Dona
    BMC Medical Research Methodology, 18