Measuring Trajectory Similarity Based on the Spatio-Temporal Properties of Moving Objects in Road Networks

被引:0
|
作者
Dorosti, Ali [1 ]
Alesheikh, Ali Asghar [1 ]
Sharif, Mohammad [2 ]
机构
[1] KN Toosi Univ Technol, Dept Geospatial Informat Syst, Tehran 1996715433, Iran
[2] Univ Duisburg Essen, Inst Mobil & Urban Planning, D-45127 Essen, Germany
关键词
spatio-temporal similarity; movement pattern; network space; graph; taxi trajectory;
D O I
10.3390/info15010051
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advancements in navigation and tracking technologies have resulted in a significant increase in movement data within road networks. Analyzing the trajectories of network-constrained moving objects makes a profound contribution to transportation and urban planning. In this context, the trajectory similarity measure enables the discovery of inherent patterns in moving object data. Existing methods for measuring trajectory similarity in network space are relatively slow and neglect the temporal characteristics of trajectories. Moreover, these methods focus on relatively small volumes of data. This study proposes a method that maps trajectories onto a network-based space to overcome these limitations. This mapping considers geographical coordinates, travel time, and the temporal order of trajectory segments in the similarity measure. Spatial similarity is measured using the Jaccard coefficient, quantifying the overlap between trajectory segments in space. Temporal similarity, on the other hand, incorporates time differences, including common trajectory segments, start time variation and trajectory duration. The method is evaluated using real-world taxi trajectory data. The processing time is one-quarter of that required by existing methods in the literature. This improvement allows for spatio-temporal analyses of a large number of trajectories, revealing the underlying behavior of moving objects in network space.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Towards a Spatio-Temporal Information System for Moving Objects
    Santos, Maribel Yasmina
    Mendes, Jose
    Moreira, Adriano
    Wachowicz, Monica
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2011, PT I, 2011, 6782 : 1 - 16
  • [22] On Retrieving Moving Objects Gathering Patterns from Trajectory Data via Spatio-Temporal Graph
    Zhang, Junming
    Li, Jinglin
    Wang, Shangguang
    Liu, Zhihan
    Yuan, Quan
    Yang, Fangchun
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 390 - 397
  • [23] Towards robust trajectory similarity computation: Representation-based spatio-temporal similarity quantification
    Chen, Ziwen
    Li, Ke
    Zhou, Silin
    Chen, Lisi
    Shang, Shuo
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2023, 26 (04): : 1271 - 1294
  • [24] Towards robust trajectory similarity computation: Representation-based spatio-temporal similarity quantification
    Ziwen Chen
    Ke Li
    Silin Zhou
    Lisi Chen
    Shuo Shang
    World Wide Web, 2023, 26 : 1271 - 1294
  • [25] A new trajectory search algorithm based on spatio-temporal similarity on spatial network
    Chang, Jae-Woo
    Bista, Rabindra
    Kim, Ji-Hee
    Kim, Young-Chang
    2007 CIT: 7TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY, PROCEEDINGS, 2007, : 110 - 115
  • [26] Spatio-temporal compression of trajectories in road networks
    Popa, Iulian Sandu
    Zeitouni, Karine
    Oria, Vincent
    Kharrat, Ahmed
    GEOINFORMATICA, 2015, 19 (01) : 117 - 145
  • [27] Spatio-temporal compression of trajectories in road networks
    Iulian Sandu Popa
    Karine Zeitouni
    Vincent Oria
    Ahmed Kharrat
    GeoInformatica, 2015, 19 : 117 - 145
  • [28] A Hybrid Method to Incrementally Extract Road Networks Using Spatio-Temporal Trajectory Data
    Zhang, Yunfei
    Zhang, Zexu
    Huang, Jincai
    She, Tingting
    Deng, Min
    Fan, Hongchao
    Xu, Peng
    Deng, Xingshen
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (04)
  • [29] Spatio-temporal Similarity Measure for Network Constrained Trajectory Data
    Xia, Ying
    Wang, Guo-Yin
    Zhang, Xu
    Kim, Gyoung-Bae
    Bae, Hae-Young
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2011, 4 (05) : 1070 - 1079
  • [30] Spatio-temporal Similarity Measure for Network Constrained Trajectory Data
    Xia Y.
    Wang G.-Y.
    Zhang X.
    Kim G.-B.
    Bae H.-Y.
    International Journal of Computational Intelligence Systems, 2011, 4 (5) : 1070 - 1079