Estimating the Aboveground Biomass of Various Forest Types with High Heterogeneity at the Provincial Scale Based on Multi-Source Data

被引:17
|
作者
Huang, Tianbao [1 ,2 ,3 ]
Ou, Guanglong [3 ]
Wu, Yong [3 ]
Zhang, Xiaoli [3 ]
Liu, Zihao [3 ]
Xu, Hui [3 ]
Xu, Xiongwei [1 ,2 ]
Wang, Zhenghui [1 ,2 ]
Xu, Can [1 ,2 ]
机构
[1] China Geol Survey, Kunming Gen Survey Nat Resources Ctr, Kunming 650111, Peoples R China
[2] Minist Nat Resources, Technol Innovat Ctr Nat Ecosyst Carbon Sink, Kunming 650111, Peoples R China
[3] Southwest Forestry Univ, Minist Educ, Key Lab Southwest Mt Forest Resources Conservat &, Kunming 650233, Peoples R China
关键词
environmental factors; forest AGB estimation; forest heterogeneity; forest types; machine learning algorithms; Yunnan Province of China; SPECIES-DIVERSITY; SATELLITE IMAGERY; YUNNAN PROVINCE; CLIMATE-CHANGE; PREDICTION; CARBON; AREAS; FIRE;
D O I
10.3390/rs15143550
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
It is important to improve the accuracy of models estimating aboveground biomass (AGB) in large areas with complex geography and high forest heterogeneity. In this study, k-nearest neighbors (k-NN), gradient boosting machine (GBM), random forest (RF), quantile random forest (QRF), regularized random forest (RRF), and Bayesian regularization neural network (BRNN) machine learning algorithms were constructed to estimate the AGB of four forest types based on environmental factors and the variables selected by the Boruta algorithm in Yunnan Province and using integrated Landsat 8 OLI and Sentinel 2A images. The results showed that (1) DEM was the most important variable for estimating the AGB of coniferous forests, evergreen broadleaved forests, deciduous broadleaved forests, and mixed forests; while the vegetation index was the most important variable for estimating deciduous broadleaved forests, the climatic factors had a higher variable importance for estimating coniferous and mixed forests, and texture features and vegetation index had a higher variable importance for estimating evergreen broadleaved forests. (2) In terms of specific model performance for the four forest types, RRF was the best model both in estimating the AGB of coniferous forests and mixed forests; the R-2 and RMSE for coniferous forests were 0.63 and 43.23 Mg ha(-1), respectively, and the R-2 and RMSE for mixed forests were 0.56 and 47.79 Mg ha(-1), respectively. BRNN performed the best in estimating the AGB of evergreen broadleaved forests; the R-2 was 0.53 and the RMSE was 68.16 Mg ha(-1). QRF was the best in estimating the AGB of deciduous broadleaved forests, with R-2 of 0.43 and RMSE of 45.09 Mg ha(-1). (3) RRF was the best model for the four forest types according to the mean values, with R-2 and RMSE of 0.503 and 52.335 Mg ha(-1), respectively. In conclusion, different variables and suitable models should be considered when estimating the AGB of different forest types. This study could provide a reference for the estimation of forest AGB based on remote sensing in complex terrain areas with a high degree of forest heterogeneity.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Estimation of Aboveground Biomass of Chinese Milk Vetch Based on UAV Multi-Source Map Fusion
    Zhang, Chaoyang
    Zhu, Qiang
    Fu, Zhenghuan
    Yuan, Chu
    Geng, Mingjian
    Meng, Ran
    REMOTE SENSING, 2025, 17 (04)
  • [22] Three-Stage Up-Scaling and Uncertainty Estimation in Forest Aboveground Biomass Based on Multi-Source Remote Sensing Data Considering Spatial Correlation
    Ding, Xiangyuan
    Chen, Erxue
    Zhao, Lei
    Fan, Yaxiong
    Wang, Jian
    Ma, Yunmei
    REMOTE SENSING, 2025, 17 (04)
  • [23] Estimation of aboveground biomass of senescence grassland in China's arid region using multi-source data
    Zhou, Jiahui
    Zhang, Renping
    Guo, Jing
    Dai, Junfeng
    Zhang, Jianli
    Zhang, Liangliang
    Miao, Yuhao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 918
  • [24] Estimating building-scale population using multi-source spatial data
    Shang, Shuoshuo
    Du, Shihong
    Du, Shouji
    Zhu, Shoujie
    CITIES, 2021, 111
  • [25] Estimating Biomass Carbon Stocks of Inner Mongolia Grasslands Using Multi-Source Data
    Liu, Yong
    Sun, Shaobo
    Yang, Xiaolei
    Wang, Xufeng
    Liu, Kai
    Dong, Haibo
    REMOTE SENSING, 2025, 17 (01)
  • [26] Indicating Saturation Limits of Multi-sensor Satellite Data in Estimating Aboveground Biomass of a Mangrove Forest
    Jagadish, Buddolla
    Behera, Mukunda Dev
    Prakash, A. Jaya
    Paramanik, Somnath
    Ghosh, Sujit M.
    Patnaik, C.
    Das, A.
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2024, 52 (11) : 2483 - 2500
  • [27] Estimating Tea Plantation Area Based on Multi-source Satellite Data
    Huang, Yanhong
    Li, Shirui
    Yuang, Lingbo
    Cheng, Jiefeng
    Li, Wenjie
    Chen, Yan
    Huang, Jingfeng
    2019 8TH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS), 2019,
  • [28] Estimation of National Forest Aboveground Biomass from Multi-Source Remotely Sensed Dataset with Machine Learning Algorithms in China
    Tang, Zhi
    Xia, Xiaosheng
    Huang, Yonghua
    Lu, Yan
    Guo, Zhongyang
    REMOTE SENSING, 2022, 14 (21)
  • [29] Forest Biomass Inversion in Jilin Province of China Based on Machine Learning and Multi-source Remote Sensing Data
    Liu, He
    Gu, Lingjia
    Ren, Ruizhi
    2019 PHOTONICS & ELECTROMAGNETICS RESEARCH SYMPOSIUM - FALL (PIERS - FALL), 2019, : 2711 - 2718
  • [30] Method for national fuel types classification based on multi-source data
    Li X.
    Liu Q.
    Qin X.
    Liu S.
    Wang C.
    National Remote Sensing Bulletin, 2022, 26 (03) : 480 - 492