Wave packet theory for non-resonant x-ray emission and non-resonant Auger electron emission in molecules

被引:1
|
作者
Savchenko, Viktoriia [1 ]
Odelius, Michael [2 ]
Banerjee, Ambar [2 ]
Ignatova, Nina [3 ]
Foehlisch, Alexander [4 ]
Gelmukhanov, Faris [1 ]
Kimberg, Victor [1 ]
机构
[1] KTH Royal Inst Technol, Div Theoret Chem & Biol, S-10691 Stockholm, Sweden
[2] Stockholm Univ, AlbaNova Univ Ctr, Dept Phys, SE-10691 Stockholm, Sweden
[3] Siberian Fed Univ, Int Res Ctr Spect & Quantum Chem IRC SQC, Krasnoyarsk 660041, Russia
[4] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2023年 / 159卷 / 04期
基金
瑞典研究理事会; 俄罗斯科学基金会;
关键词
PHOTOELECTRON-SPECTRUM; RAMAN-SCATTERING; WATER; DYNAMICS; STATES;
D O I
10.1063/5.0159474
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a time-dependent theory for non-resonant x-ray emission spectrum (XES) and normal Auger spectrum (NAS) calculation, based on a fully quantum description of nuclear dynamics using the vibrational wave packet concept. We compare two formulations of the time-dependent theory, either employing a two-time propagation scheme or using spectral integration over the electron energy continuum. We find that the latter formulation is more efficient for numerical simulations, providing a reasonable accuracy when the integration step is shorter than the lifetime broadening of the core-ionized state. We demonstrate our approach using the example of non-resonant x-ray emission from a water molecule, considering the lowest core-ionized K-1 and first core-ionized shake-up (K-1V-1V1) intermediate states. These channels exemplify the developed theory on bound-bound, bound-continuum, continuum-bound, and continuum-continuum transitions. Our results suggest that the time-dependent approach is efficient for simulating XES involving dissociative states, whereas the time-independent approach, based on Franck-Condon factors, is more efficient for bound-bound transitions expressed as discrete frequency dependence in the energy domain. The methods and discussion have general applicability, including both NAS and more complex systems, such as liquid water.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] STUDY ON ABSORPTION-SPECTRA OF ATOMS IN NON-RESONANT BIHARMONIC EMISSION FIELD
    BONCHBRUEVICH, AM
    KHODOVOI, VA
    CHIGIR, NA
    OPTIKA I SPEKTROSKOPIYA, 1978, 44 (02): : 228 - 233
  • [42] SATURATED OPTICAL NON-RESONANT EMISSION-SPECTROSCOPY (SONRES) FOR DETECTION OF ATOMS
    GELBWACHS, JA
    KLEIN, CF
    WESSEL, JE
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1977, 13 (09) : D11 - D11
  • [43] Non-resonant electron transfer efficiency of conjugated oligomers
    Onipko, A
    Klymenko, Y
    Malysheva, L
    JOURNAL OF LUMINESCENCE, 1998, 76-7 : 658 - 661
  • [44] Theory of resonant X-ray emission spectroscopy
    Kotani, A
    JOURNAL OF SYNCHROTRON RADIATION, 2001, 8 (02): : 110 - 114
  • [45] ASYMPTOTIC THEORY OF NON-RESONANT CHARGE-EXCHANGE
    DUMAN, EL
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1981, 81 (01): : 139 - 145
  • [46] QUASI-LINEAR THEORY IN NON-RESONANT REGION
    BODNER, SE
    JOURNAL OF PLASMA PHYSICS, 1971, 5 (JAN) : 141 - &
  • [47] Resonant and non-resonant tunneling through a double barrier
    Olkhovsky, VS
    Recami, E
    Zaichenko, AK
    EUROPHYSICS LETTERS, 2005, 70 (06): : 712 - 718
  • [48] A secular theory of coplanar, non-resonant planetary system
    Migaszewski, Cezary
    Gozdziewski, Krzysztof
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2008, 388 (02) : 789 - 802
  • [49] RESONANT AND NON-RESONANT ADIABATIC INVARIANTS GENERATED BY MACSYMA
    MCNAMARA, B
    CHAR, B
    FATEMAN, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1122 - 1122
  • [50] RESONANT AND NON-RESONANT PROCESSES IN DOUBLE BARRIER STRUCTURES
    LEADBEATER, ML
    ALVES, ES
    EAVES, L
    HENINI, M
    HUGHES, OH
    CELESTE, AC
    PORTAL, JC
    SUPERLATTICES AND MICROSTRUCTURES, 1989, 6 (01) : 63 - 66