Classical vs. Quantum Machine Learning for Breast Cancer Detection

被引:2
|
作者
DIaz-Santos, Sonia [1 ]
Escanez-Exposito, Daniel [2 ]
机构
[1] Univ Laguna, Inst Univ Estudios Mujeres, San Cristobal la Laguna 38200, Tenerife, Spain
[2] Univ La Laguna, Dept Comp Engn & Syst, San Cristobal la Laguna, Tenerife, Spain
关键词
Quantum Machine Learning; Quantum Classification; Variational Quantum Classifier; Support Vector Classification; Breast Cancer Detection;
D O I
10.1109/DRCN57075.2023.10108230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Breast cancer is one of the top causes of mortality in women throughout the world, and early identification is critical for successful treatment. The accuracy of breast cancer diagnosis has been improved thanks to machine learning. This research compares the effectiveness of conventional and quantum machine learning systems for detecting breast cancer in great detail. Using a publically accessible data set, the project will examine several quantum machine learning models and compare them to classical machine learning algorithms. The results of this study could provide insights into the potential benefits of quantum machine learning for breast cancer detection and ultimately contribute to improving the accuracy of breast cancer diagnosis.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Machine Learning: Quantum vs Classical
    Khan, Tariq M.
    Robles-Kelly, Antonio
    IEEE ACCESS, 2020, 8 : 219275 - 219294
  • [2] KNN vs. Bluecat-Machine Learning vs. Classical Statistics
    Rozos, Evangelos
    Koutsoyiannis, Demetris
    Montanari, Alberto
    HYDROLOGY, 2022, 9 (06)
  • [3] 'Classical vs. Quantum'
    Houghton, T
    STAND, 2003, 4-5 (4-1): : 41 - 41
  • [4] Classical Algorithm vs. Machine Learning in Objects Recognition
    Czygier, Jakub
    Tomaszuk, Piotr
    Lukowsk, Aneta
    Straszynski, Pawel
    Dzierek, Kazimierz
    ADVANCES IN COMPUTER VISION, VOL 2, 2020, 944 : 734 - 745
  • [5] Breast Cancer Decision Support: Expert Systems vs. Machine Learning
    Khanbhai, M.
    Patkar, V.
    Ruta, D.
    Kothari, A.
    Kristeleit, H.
    Kazmi, M.
    BREAST, 2025, 80
  • [6] On quantum vs. classical probability
    Rau, Jochen
    ANNALS OF PHYSICS, 2009, 324 (12) : 2622 - 2637
  • [7] Efficiency of quantum vs. classical annealing in nonconvex learning problems
    Baldassi, Carlo
    Zecchina, Riccardo
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (07) : 1457 - 1462
  • [8] Prediction of Dead Oil Viscosity: Machine Learning vs. Classical Correlations
    Hadavimoghaddam, Fahimeh
    Ostadhassan, Mehdi
    Heidaryan, Ehsan
    Sadri, Mohammad Ali
    Chapanova, Inna
    Popov, Evgeny
    Cheremisin, Alexey
    Rafieepour, Saeed
    ENERGIES, 2021, 14 (04)
  • [9] Predictive Power for Thrombus Detection after Atrial Appendage Closure: Machine Learning vs. Classical Methods
    Antunez-Muinos, Pablo
    Vicente-Palacios, Victor
    Perez-Sanchez, Pablo
    Sampedro-Gomez, Jesus
    Sanchez-Puente, Antonio
    Ignacio Dorado-Diaz, Pedro
    Nombela-Franco, Luis
    Salinas, Pablo
    Gutierrez-Garcia, Hipolito
    Amat-Santos, Ignacio
    Peral, Vicente
    Morcuende, Antonio
    Asmarats, Lluis
    Freixa, Xavier
    Regueiro, Ander
    Caneiro-Queija, Berenice
    Estevez-Loureiro, Rodrigo
    Rodes-Cabau, Josep
    Sanchez, Pedro Luis
    Cruz-Gonzalez, Ignacio
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (09):
  • [10] Breast cancer detection by leveraging Machine Learning
    Vaka, Anji Reddy
    Soni, Badal
    Reddy, Sudheer K.
    ICT EXPRESS, 2020, 6 (04): : 320 - 324