A Deep Learning-Based Downscaling Method Considering the Impact on Typhoons to Future Precipitation in Taiwan

被引:0
|
作者
Lin, Shiu-Shin [1 ]
Zhu, Kai-Yang [1 ]
Wang, Chen-Yu [1 ]
机构
[1] Chung Yuan Christian Univ, Coll Engn, Dept Civil Engn, Taoyuan City 320314, Taiwan
关键词
IPCC Fifth Assessment Report; climate change; deep neural network; typhoon; uncertainty; kernel principal component analysis; CLIMATE-CHANGE; MODEL;
D O I
10.3390/atmos15030371
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study proposes a deep neural network (DNN)-based downscaling model incorporating kernel principal component analysis (KPCA) to investigate the precipitation uncertainty influenced by typhoons in Taiwan, which has a complex island topography. The best tracking data of tropical cyclones from the Joint Typhoon Warning Center (JTWC) are utilized to calculate typhoon and non-typhoon precipitation. KPCA is applied to extract nonlinear features of the BCC-CSM1-1 (Beijing Climate Center Climate System Model version 1.1) and CanESM2 (second-generation Canadian Earth System Model) GCM models. The length of the data used in the two GCM models span from January 1950 to December 2005 (historical data) and from January 2006 to December 2099 (scenario out data). The rainfall data are collected from the weather stations in Taichung and Hualien (cities of Taiwan) operated by the Central Weather Administration (CWA), Taiwan. The period of rainfall data in Taichung and in Hualien spans from January 1950 to December 2005. The proposed model is constructed with features extracted from the GCMs and historical monthly precipitation from Taichung and Hualien. The model we have built is used to estimate monthly precipitation and uncertainty in both Taichung and Hualien for future scenarios (rcp 4.5 and 8.5) of the GCMs. The results suggest that, in Taichung and Hualien, the summer precipitation is mostly within the normal range. The rainfall in the long term (January 2071 to December 2080) for both Taichung and Hualien typically fall between 100 mm and 200 mm. In the long term, the dry season (January to April, November, and December) precipitation for Taichung and that in the wet season (May to October) for Hualien are less and more affected by typhoons, respectively. The dry season precipitation is more affected by typhoons in Taichung than Hualien. In both Taichung and Hualien, the long-term probability of rainfall exceeding the historical average in the dry season is higher than that in the wet season.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Downscaling Taiwan precipitation with a residual deep learning approach
    Hsu, Li-Huan
    Chiang, Chou-Chun
    Lin, Kuan-Ling
    Lin, Hsin-Hung
    Chu, Jung-Lien
    Yu, Yi-Chiang
    Fahn, Chin-Shyurng
    GEOSCIENCE LETTERS, 2024, 11 (01)
  • [2] Statistical Learning-Based Spatial Downscaling Models for Precipitation Distribution
    Wu, Yichen
    Zhang, Zhihua
    Crabbe, M. James C.
    Das, Lipon Chandra
    ADVANCES IN METEOROLOGY, 2022, 2022
  • [3] On the modern deep learning approaches for precipitation downscaling
    Kumar, Bipin
    Atey, Kaustubh
    Singh, Bhupendra Bahadur
    Chattopadhyay, Rajib
    Acharya, Nachiketa
    Singh, Manmeet
    Nanjundiah, Ravi S.
    Rao, Suryachandra A.
    EARTH SCIENCE INFORMATICS, 2023, 16 (2) : 1459 - 1472
  • [4] Deep Learning for Daily Precipitation and Temperature Downscaling
    Wang, Fang
    Tian, Di
    Lowe, Lisa
    Kalin, Latif
    Lehrter, John
    WATER RESOURCES RESEARCH, 2021, 57 (04)
  • [5] On the modern deep learning approaches for precipitation downscaling
    Bipin Kumar
    Kaustubh Atey
    Bhupendra Bahadur Singh
    Rajib Chattopadhyay
    Nachiketa Acharya
    Manmeet Singh
    Ravi S. Nanjundiah
    Suryachandra A. Rao
    Earth Science Informatics, 2023, 16 : 1459 - 1472
  • [6] Assessing the Performance of a Machine Learning-Based Hybrid Model in Downscaling Precipitation Data
    Rouzegari, Nazak
    Nourani, Vahid
    Ludwig, Ralf
    Laux, Patrick
    PROCEEDINGS OF 7TH INTERNATIONAL CONFERENCE ON HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS (ICHSA 2022), 2022, 140 : 235 - 245
  • [7] Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method
    Zhang, Shuangyi
    Li, Xichen
    ENERGY, 2021, 217
  • [8] Considering observed and future nonstationarities in statistical downscaling of Mediterranean precipitation
    Elke Hertig
    Jucundus Jacobeit
    Theoretical and Applied Climatology, 2015, 122 : 667 - 683
  • [9] Considering observed and future nonstationarities in statistical downscaling of Mediterranean precipitation
    Hertig, Elke
    Jacobeit, Jucundus
    THEORETICAL AND APPLIED CLIMATOLOGY, 2015, 122 (3-4) : 667 - 683
  • [10] Modelling of Deep Learning-Based Downscaling for Wave Forecasting in Coastal Area
    Adytia, Didit
    Saepudin, Deni
    Tarwidi, Dede
    Pudjaprasetya, Sri Redjeki
    Husrin, Semeidi
    Sopaheluwakan, Ardhasena
    Prasetya, Gegar
    WATER, 2023, 15 (01)