A novel phase change material-based thermal management of electric machine windings enabled by additive manufacturing

被引:4
|
作者
Broumand, Mohsen [1 ]
Yun, Sean [1 ]
Hong, Zekai [1 ]
机构
[1] Natl Res Council Canada, Aerosp Res Ctr, 1200 Montreal Rd, Ottawa, ON K1A 0R6, Canada
关键词
Motor; Generator; Electromagnetic loss; Thermal analysis; Cooling; Multiphysics modeling; MOTOR; DESIGN; OPPORTUNITIES; PERFORMANCE; CHALLENGES;
D O I
10.1016/j.applthermaleng.2024.122802
中图分类号
O414.1 [热力学];
学科分类号
摘要
While recent advances in additive manufacturing have provided immense opportunities for the development of next -generation electric machines, the machine thermal management has become one of the limiting factors to achieve high performances. Herein, a novel approach for the thermal management of electric machine windings under transient high -load conditions is proposed through the additive manufacturing of their magnetic cores with a thin -wall structure topology and filling their interstices with phase change materials (PCMs). The investigation initially focuses on reducing electromagnetic losses in the stator of an electric machine by changing its core topology from a bulk to a thin -wall structure. The effectiveness of PCM in curbing temperature rises within its winding is subsequently evaluated in scenarios where active cooling is absent or present. The analyses are performed by solving a set of coupled electromagnetic and heat transfer equations through a threedimensional frequency -transient finite element analysis. The results demonstrate an increase of 74% in allowable duration before the safe temperature threshold is exceeded without active cooling. With active cooling, temperature rises are delayed by 104% at the early stages of operations. This offers a simple, low-cost, and efficient thermal management option for enhancing the performance of an electric machine and prolonging its working life.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Performance assessment of phase change material-based thermal energy storage
    Rajan, Abhinav
    Gan, Yixiang
    Reddy, K. S.
    JOURNAL OF ENERGY STORAGE, 2024, 87
  • [12] Thermal Performance of a Phase Change Material-Based Latent Heat Thermal Storage Unit
    Rathod, Manish
    Banerjee, Jyotirmay
    HEAT TRANSFER-ASIAN RESEARCH, 2014, 43 (08): : 706 - 719
  • [13] A phase change material-based constructal design finned heat sink: An evolutionary design for thermal management
    Arshad, Adeel
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2025, 161
  • [14] Numerical Investigation of Phase Change Material-Based Hybrid Battery Thermal Management System for Mass Optimization
    Swamy, Kundrapu Ayyappa
    Verma, Saket
    Mittal, Lakshit
    HEAT TRANSFER ENGINEERING, 2025, 46 (01) : 36 - 50
  • [15] Experimental Investigations on Effect of Orientation on Thermal Performance of a Novel Phase Change Material-Based Heat Sink
    Shankar, Ch Ravi
    Naresh, Y.
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2023, 15 (09)
  • [16] Phase Change Material-Based Heat Sinks
    Shea, John J.
    IEEE ELECTRICAL INSULATION MAGAZINE, 2021, 37 (01) : 43 - 43
  • [17] Toward Accurate Thermal Modeling of Phase Change Material-Based Photonic Devices
    Aryana, Kiumars
    Kim, Hyun Jung
    Popescu, Cosmin-Constantin
    Vitale, Steven
    Bae, Hyung Bin
    Lee, Taewoo
    Gu, Tian
    Hu, Juejun
    SMALL, 2023, 19 (50)
  • [18] Parameter effect quantification for a phase change material-based lithium-ion battery thermal management system
    Morali, Ugur
    TURKISH JOURNAL OF CHEMISTRY, 2022, 46 (05) : 1620 - 1631
  • [19] Impact of phase change material-based heatsinks on lithium-ion battery thermal management: A comprehensive review
    Wu, Wei
    Smaisim, Ghassan Fadhil
    Sajadi, S. Mohammad
    Fagiry, Moram A.
    Li, Zhixiong
    Shamseldin, Mohamed A.
    Aybar, Hikmet S.
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [20] Enhanced thermal performance of the solidification process of nanopowder-phase change material-based latent thermal unit: Heat management
    Chibani, Atef
    Dehane, Aissa
    Merouani, Slimane
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2024, 85 (01) : 60 - 75