Field-informed Reinforcement Learning of Collective Tasks with Graph Neural Networks

被引:3
|
作者
Aguzzi, Gianluca [1 ]
Viroli, Mirko [1 ]
Esterle, Lukas [2 ]
机构
[1] Univ Bologna, Alma Mater Studiorum, Cesena, Italy
[2] Aarhus Univ, Aarhus, Denmark
关键词
Aggregate Computing; Graph Neural Networks; Cyber-Physical Swarms; Many Agent Reinforcement Learning; GO;
D O I
10.1109/ACSOS58161.2023.00021
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Coordinating a multi-agent system of intelligent situated agents is a traditional research problem, impacted by the challenges posed by the very notion of distributed intelligence. These problems arise from agents acquiring information locally, sharing their knowledge, and acting accordingly in their environment to achieve a common, global goal. These issues are even more evident in large-scale collective adaptive systems, where agent interactions are necessarily proximity-based, thus making the emergence of controlled global collective behaviour harder. In this context, two main approaches have been proposed for creating distributed controllers out of macro-level task/goal descriptions: manual design, in which programmers build the controllers directly, and automatic design, which involves synthesizing programs using machine learning methods. In this paper, we consider a new hybrid approach called Field-Informed reinforcement learning (FIRL). We utilise manually designed computational fields (globally distributed data structures) to manage global agent coordination. Then, using Deep Q-learning in combination with Graph Neural Networks we enable the agents to learn the necessary local behaviour automatically to solve collective tasks, relying on those fields through local perception. We demonstrate the effectiveness of this new approach in simulated use cases where tracking and covering tasks for swarm robotics are successfully solved.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [31] Late Breaking Results: Reinforcement Learning for Scalable Logic Optimization with Graph Neural Networks
    Timoneda, Xavier
    Cavigelli, Lukas
    2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, : 1378 - 1379
  • [32] Optimizing WDM Network Restoration with Deep Reinforcement Learning and Graph Neural Networks Integration
    Ampratwum, Isaac
    Nayak, Amiya
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 794 - 800
  • [33] Efficient Integration of Reinforcement Learning in Graph Neural Networks-Based Recommender Systems
    Sharifbaev, Abdurakhmon
    Mozikov, Mikhail
    Zaynidinov, Hakimjon
    Makarov, Ilya
    IEEE ACCESS, 2024, 12 : 189439 - 189448
  • [34] Towards High-Quality CGRA Mapping with Graph Neural Networks and Reinforcement Learning
    Zhuang, Yan
    Zhang, Zhihao
    Liu, Dajiang
    2022 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2022,
  • [35] Reinforcement learning-based secure training for adversarial defense in graph neural networks
    An, Dongdong
    Yang, Yi
    Gao, Xin
    Qi, Hongda
    Yang, Yang
    Ye, Xin
    Li, Maozhen
    Zhao, Qin
    NEUROCOMPUTING, 2025, 630
  • [36] Deep Reinforcement Learning and Graph Neural Networks for Efficient Resource Allocation in 5G Networks
    Randall, Martin
    Belzarena, Pablo
    Larroca, Federico
    Casas, Pedro
    2022 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (LATINCOM), 2022,
  • [37] Batch Active Learning with Graph Neural Networks via Multi-Agent Deep Reinforcement Learning
    Zhang, Yuheng
    Tong, Hanghang
    Xia, Yinglong
    Zhu, Yan
    Chi, Yuejie
    Ying, Lei
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9118 - 9126
  • [38] Reinforcement Learning with Neural Networks: A Survey
    Modi, Bhumika
    Jethva, H. B.
    PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR INTELLIGENT SYSTEMS: VOL 1, 2016, 50 : 467 - 475
  • [39] Global reinforcement learning in neural networks
    Ma, Xiaolong
    Likharev, Konstantin K.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2007, 18 (02): : 573 - 577
  • [40] Optimising reinforcement learning for neural networks
    Hurwitz, E
    Marwala, T
    GAME-ON 2005: 6th International Conference on Intelligent Games and Simulation, 2005, : 13 - 18