Dual-plasma enhanced 2D/2D/2D g-C3N4/Pd/MoO3-x S-scheme heterojunction for high-selectivity photocatalytic CO2 reduction

被引:13
|
作者
Wang, Huijie [1 ]
Liu, Qi [1 ]
Xu, Mengyang [1 ]
Yan, Chenlong [2 ]
Song, Xianghai [1 ]
Liu, Xin [1 ]
Wang, Huiqin [2 ]
Zhou, Weiqiang [1 ]
Huo, Pengwei [1 ]
机构
[1] Jiangsu Univ, Inst Green Chem & Chem Technol, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
[2] Jiangsu Univ, Sch Energy & Power Engn, Zhenjiang 212013, Peoples R China
基金
中国国家自然科学基金;
关键词
Localized surface plasmon resonance effect; Photocatalysis CO 2 reduction; S-scheme heterojunction; Ultrathin Pd nanosheets; High-selectivity; PHOTOREDUCTION; CONVERSION; G-C3N4;
D O I
10.1016/j.apsusc.2023.158420
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The localized surface plasmon resonance (LSPR) effect has shown significant progress in enhancing the efficiency of light absorption and separating photogenerated carriers. Herein, the dual-plasma enhanced 2D/2D/2D gC3N4/Pd/MoO3-x (CPM) S-scheme heterojunction photocatalysts were synthesized using the method of hydrothermal and electrostatic self-assembly for high-selectivity photocatalytic reduction of CO2 to produce CO. The dual LSPR effect of MoO3-x and ultrathin Pd nanosheets synergistically broadened the optical response range of the CPM composites and successfully improved the photocatalytic activity and near-infrared (NIR) performance. The optimized CPM-30 photocatalysts exhibited CO yields of 18.55 mu mol g-1 with a selectivity of 96.3%. In addition, the CO yield reached 3.92 mu mol g-1 after 4 h of NIR light photoirradiation. The electron spin resonance (ESR) and ultraviolet photoelectron spectroscopy (UPS) tests showed that the S-scheme heterojunctions were constructed by coupling g-C3N4/Pd nanosheets and MoO3-x. This work will provide a reference for improving product selectivity through the design of two-dimensional composites and the utilization of plasma materials.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A Z-scheme photocatalyst for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3-x nanoplates onto 2D g-C3N4 nanosheets
    Guo, Yanzhen
    Chang, Binbin
    Wen, Ting
    Zhang, Shouren
    Zeng, Min
    Hu, Nantao
    Su, Yanjie
    Yan, Zhi
    Yang, Baocheng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 567 : 213 - 223
  • [22] 2D/2D CsPbBr3/BiOCl Heterojunction with an S-Scheme Charge Transfer for Boosting the Photocatalytic Conversion of CO2
    Jiang, Ying
    Wang, Yating
    Zhang, Zhijie
    Dong, Zhongliang
    Xu, Jiayue
    INORGANIC CHEMISTRY, 2022, 61 (27) : 10557 - 10566
  • [23] Stannum vacancies at precise interface of 2D/2D g-C3N4/SnS S-scheme heterojunction boost up photocatalysis
    Shi, Huiming
    Shi, Quanquan
    Piracha, Sanwal
    Li, Gao
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (31) : 20270 - 20277
  • [24] Pd Nanosheet-Decorated 2D/2D g-C3N4/WO3•H2O S-Scheme Photocatalyst for High Selective Photoreduction of CO2 to CO
    Liu, Qi
    Zhao, Xiaoxue
    Song, Xianghai
    Liu, Xin
    Zhou, Weiqiang
    Wang, Huiqin
    Huo, Pengwei
    INORGANIC CHEMISTRY, 2022, 61 (09) : 4171 - 4183
  • [25] 2D/2D g-C3N4/(001)-TiO2 Z-scheme heterojunction decorated with CQDs for enhanced Photocatalytic activity
    Wang, Yueying
    Chen, Jin
    Yang, Xiaofeng
    Liu, Xinwei
    Que, Meidan
    Ma, Yuzhao
    Li, Yanjun
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [26] Construction of 2D/2D protonated g-C3N4 /BiOBr heterojunction composite with high photocatalytic degradation performance
    Qin, Qianqian
    Zhang, Shizheng
    Song, Bo
    Wang, Hailiang
    Li, Mingliang
    Shao, Gang
    Fan, Bingbing
    Wang, Hailong
    Lu, Hongxia
    Xu, Hongliang
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [27] The In-situ Growth NiFe-layered Double Hydroxides/g-C3N4 Nanocomposite 2D/2D Heterojunction for Enhanced Photocatalytic CO2 Reduction Performance
    Xiaoya Zhao
    Xiuping Zhao
    Inam Ullah
    Linning Gao
    Junzheng Zhang
    Jun Lu
    Catalysis Letters, 2021, 151 : 1683 - 1692
  • [28] The In-situ Growth NiFe-layered Double Hydroxides/g-C3N4 Nanocomposite 2D/2D Heterojunction for Enhanced Photocatalytic CO2 Reduction Performance
    Zhao, Xiaoya
    Zhao, Xiuping
    Ullah, Inam
    Gao, Linning
    Zhang, Junzheng
    Lu, Jun
    CATALYSIS LETTERS, 2021, 151 (06) : 1683 - 1692
  • [29] Bi4NbO8Cl {001} nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction
    Xu, Yue
    You, Yong
    Huang, Hongwei
    Guo, Yuxi
    Zhang, Yihe
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 381
  • [30] Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide
    Geng, Yanxian
    Chen, Dongyun
    Li, Najun
    Xu, Qingfeng
    Li, Hua
    He, Jinghui
    Lu, Jianmei
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 280