Human Activity Recognition Method Based on FMCW Radar Sensor with Multi-Domain Feature Attention Fusion Network

被引:8
|
作者
Cao, Lin [1 ,2 ]
Liang, Song [1 ,2 ]
Zhao, Zongmin [1 ,2 ]
Wang, Dongfeng [3 ]
Fu, Chong [4 ]
Du, Kangning [1 ,2 ]
机构
[1] Beijing Informat Sci & Technol Univ, Key Lab Informat & Commun Syst, Minist Informat Ind, Beijing 100101, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Key Lab, Minist Educ Optoelect Measurement Technol & Instru, Beijing 100101, Peoples R China
[3] Beijing TransMicrowave Technol Co, Beijing 100080, Peoples R China
[4] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110169, Peoples R China
基金
美国国家科学基金会;
关键词
human activity recognition; attention mechanism; multi-domain feature fusion; multi-classification focus loss; FMCW radar sensor; NEURAL-NETWORK; CLASSIFICATION; CHANNEL;
D O I
10.3390/s23115100
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper proposes a human activity recognition (HAR) method for frequency-modulated continuous wave (FMCW) radar sensors. The method utilizes a multi-domain feature attention fusion network (MFAFN) model that addresses the limitation of relying on a single range or velocity feature to describe human activity. Specifically, the network fuses time-Doppler (TD) and time-range (TR) maps of human activities, resulting in a more comprehensive representation of the activities being performed. In the feature fusion phase, the multi-feature attention fusion module (MAFM) combines features of different depth levels by introducing a channel attention mechanism. Additionally, a multi-classification focus loss (MFL) function is applied to classify confusable samples. The experimental results demonstrate that the proposed method achieves 97.58% recognition accuracy on the dataset provided by the University of Glasgow, UK. Compared to existing HAR methods for the same dataset, the proposed method showed an improvement of about 0.9-5.5%, especially in the classification of confusable activities, showing an improvement of up to 18.33%.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Perceptual authentication hashing for digital images based on multi-domain feature fusion
    Cao, Fang
    Yao, Shifei
    Zhou, Yuanding
    Yao, Heng
    Qin, Chuan
    SIGNAL PROCESSING, 2024, 223
  • [42] Specific Emitter Identification Based on Multi-Domain Feature Fusion and Integrated Learning
    Qu, Ling-Zhi
    Liu, Hui
    Huang, Ke-Ju
    Yang, Jun-An
    SYMMETRY-BASEL, 2021, 13 (08):
  • [43] AMFF: A new attention-based multi-feature fusion method for intention recognition
    Liu, Cong
    Xu, Xiaolong
    KNOWLEDGE-BASED SYSTEMS, 2021, 233
  • [44] Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System
    Li, Hongqiang
    Yuan, Danyang
    Wang, Youxi
    Cui, Dianyin
    Cao, Lu
    SENSORS, 2016, 16 (10)
  • [45] Multi-domain fusion deep graph convolution neural network for EEG emotion recognition
    Bi, Jinying
    Wang, Fei
    Yan, Xin
    Ping, Jingyu
    Wen, Yongzhao
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (24): : 22241 - 22255
  • [46] Multi-domain fusion deep graph convolution neural network for EEG emotion recognition
    Bi, Jinying
    Wang, Fei
    Yan, Xin
    Ping, Jingyu
    Wen, Yongzhao
    Neural Computing and Applications, 2022, 34 (24): : 22241 - 22255
  • [47] Domain adaptation based on feature fusion and multi-attention mechanism*
    Wang, Tiansheng
    Liu, Zhonghua
    Ou, Weihua
    Huo, Hua
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 108
  • [48] Multi-domain fusion deep graph convolution neural network for EEG emotion recognition
    Jinying Bi
    Fei Wang
    Xin Yan
    Jingyu Ping
    Yongzhao Wen
    Neural Computing and Applications, 2022, 34 : 22241 - 22255
  • [49] A Lightweight Hand-Gesture Recognition Network With Feature Fusion Prefiltering and FMCW Radar Spatial Angle Estimation
    Chen, Jingxuan
    Guo, Shisheng
    Lv, Shuo
    Cui, Guolong
    Kong, Lingjiang
    IEEE SENSORS JOURNAL, 2024, 24 (17) : 27926 - 27936
  • [50] Functional brain network based multi-domain feature fusion of hearing-Impaired EEG emotion identification
    Wang, Junhui
    Song, Yu
    Gao, Qiang
    Mao, Zemin
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 85