Predictive network analysis identifies JMJD6 and other potential key drivers in Alzheimer's disease

被引:8
|
作者
Merchant, Julie P. [1 ,2 ,14 ]
Zhu, Kuixi [3 ]
Henrion, Marc Y. R. [4 ,5 ]
Zaidi, Syed S. A. [3 ]
Lau, Branden [3 ,6 ]
Moein, Sara [3 ]
Alamprese, Melissa L. [3 ]
Pearse II, Richard V. [1 ,2 ]
Bennett, David A. [7 ]
Ertekin-Taner, Niluefer [8 ,9 ]
Young-Pearse, Tracy L. [1 ,2 ,10 ]
Chang, Rui [3 ,11 ,12 ,13 ]
机构
[1] Brigham & Womens Hosp, Ann Romney Ctr Neurol Dis, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Univ Arizona, Ctr Innovat Brain Sci, Tucson, AZ 85721 USA
[4] Univ Liverpool Liverpool Sch Trop Med, Pembroke Pl, Liverpool L3 5QA, Merseyside, England
[5] Malawi Liverpool Wellcome Trust Clin Res Programm, POB 30096, Blantyre, Malawi
[6] Univ Arizona, Arizona Res Labs, Genet Core, Tucson, AZ USA
[7] Rush Univ, Med Ctr, Rush Alzheimers Dis Ctr, Chicago, IL USA
[8] Mayo Clin Florida, Dept Neurosci, Jacksonville, FL USA
[9] Mayo Clin Florida, Dept Neurol, Jacksonville, FL 32224 USA
[10] Harvard Univ, Harvard Stem Cell Inst, Boston, MA 02138 USA
[11] Univ Arizona, Dept Neurol, Tucson, AZ 85721 USA
[12] INTelico Therapeut LLC, Tucson, AZ 85718 USA
[13] PATH Biotech LLC, Tucson, AZ 85718 USA
[14] Univ Penn, Perelman Sch Med, Neurosci Grad Grp, Philadelphia, PA USA
关键词
GENOME-WIDE ASSOCIATION; NF-KAPPA-B; GENE-EXPRESSION; COGNITIVE DECLINE; EPIGENETIC MECHANISMS; CAUSAL ASSOCIATIONS; DNA METHYLATION; QUALITY-CONTROL; RUSH MEMORY; CELL ATLAS;
D O I
10.1038/s42003-023-04791-5
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
A network analysis on deconvoluted bulk transcriptomic data from human Alzheimer's disease cohorts identifies several potential key disease drivers, including JMJD6. Despite decades of genetic studies on late-onset Alzheimer's disease, the underlying molecular mechanisms remain unclear. To better comprehend its complex etiology, we use an integrative approach to build robust predictive (causal) network models using two large human multi-omics datasets. We delineate bulk-tissue gene expression into single cell-type gene expression and integrate clinical and pathologic traits, single nucleotide variation, and deconvoluted gene expression for the construction of cell type-specific predictive network models. Here, we focus on neuron-specific network models and prioritize 19 predicted key drivers modulating Alzheimer's pathology, which we then validate by knockdown in human induced pluripotent stem cell-derived neurons. We find that neuronal knockdown of 10 of the 19 targets significantly modulates levels of amyloid-beta and/or phosphorylated tau peptides, most notably JMJD6. We also confirm our network structure by RNA sequencing in the neurons following knockdown of each of the 10 targets, which additionally predicts that they are upstream regulators of REST and VGF. Our work thus identifies robust neuronal key drivers of the Alzheimer's-associated network state which may represent therapeutic targets with relevance to both amyloid and tau pathology in Alzheimer's disease.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Neuroimaging Genetics and Network Analysis in Alzheimer's Disease
    Moon, Seok Woo
    CURRENT ALZHEIMER RESEARCH, 2023, 20 (08) : 526 - 538
  • [42] Acupuncture May Be a Potential Complementary Therapy for Alzheimer's Disease: A Network Meta-Analysis
    Yin, Wenshan
    Chen, Yihan
    Xu, Anping
    Tang, Yinshan
    Zeng, Qingtao
    Wang, Xin
    Li, Zhigang
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2022, 2022
  • [43] Modeling Alzheimer's disease and other proteopathies in vivo: Is seeding the key? Review Article
    L. C. Walker
    F. Bian
    M. J. Callahan
    W. J. Lipinski
    R. A. Durham
    H. LeVine
    Amino Acids, 2002, 23 : 87 - 93
  • [44] Network Analysis Identifies Disease-Specific Pathways for Parkinson’s Disease
    Chiara Monti
    Ilaria Colugnat
    Leonardo Lopiano
    Adriano Chiò
    Tiziana Alberio
    Molecular Neurobiology, 2018, 55 : 370 - 381
  • [45] Network Analysis Identifies Disease-Specific Pathways for Parkinson's Disease
    Monti, Chiara
    Colugnat, Ilaria
    Lopiano, Leonardo
    Chio, Adriano
    Alberio, Tiziana
    MOLECULAR NEUROBIOLOGY, 2018, 55 (01) : 370 - 381
  • [46] Application of Weighted Gene Co-Expression Network Analysis to Explore the Key Genes in Alzheimer's Disease
    Liang, Jia-Wei
    Fang, Zheng-Yu
    Huang, Yong
    Liuyang, Zhen-yu
    Zhang, Xiao-Lin
    Wang, Jing-Lin
    Wei, Hui
    Wang, Jian-Zhi
    Wang, Xiao-Chuan
    Zeng, Ji
    Liu, Rong
    JOURNAL OF ALZHEIMERS DISEASE, 2018, 65 (04) : 1353 - 1364
  • [47] Potential Application of MicroRNAs and Some Other Molecular Biomarkers in Alzheimer's Disease
    Paprzycka, Olga
    Wieczorek, Jan
    Nowak, Ilona
    Madej, Marcel
    Strzalka-Mrozik, Barbara
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2024, 46 (06) : 5066 - 5084
  • [48] Analysis of immune-related key genes in Alzheimer's disease
    Wu, You
    Liang, Shunli
    Zhu, Hong
    Zhu, Yaping
    BIOENGINEERED, 2021, 12 (02) : 9610 - 9624
  • [49] Pathway-based network medicine identifies novel natural products for Alzheimer's disease
    Liang, Yumei
    Xie, Siqi
    Jia, Jianping
    ALZHEIMERS RESEARCH & THERAPY, 2025, 17 (01)
  • [50] Co-expression Network Analysis Revealing the Potential Regulatory Roles of lncRNAs in Alzheimer’s Disease
    Jiong Wu
    Linhui Chen
    Chaobo Zheng
    Shanhu Xu
    Yuhai Gao
    Junjun Wang
    Interdisciplinary Sciences: Computational Life Sciences, 2019, 11 : 645 - 654