Non-Fourier heat transport in nanosystems

被引:25
|
作者
Benenti, Giuliano [1 ,2 ]
Donadio, Davide [3 ]
Lepri, Stefano [4 ]
Livi, Roberto [4 ,5 ,6 ]
机构
[1] Univ Insubria, Ctr Nonlinear & Complex Syst, Dipartimento Sci & Alta Tecnol, via Valleggio 11, I-22100 Como, Italy
[2] Ist Nazl Fis Nucl, Sez Milano, via Celoria 16, I-20133 Milan, Italy
[3] Univ Calif Davis, Dept Chem, One Shields Ave, Davis, CA 95616 USA
[4] Ist Sistemi Complessi, Consiglio Nazl Ric, via Madonna del piano 10, I-50019 Sesto Fiorentino, Italy
[5] Univ Firenze, Dipartimento Fis & Astron, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
[6] INFN Sez Firenze, Via G Sansone 1, I-50019 Sesto Fiorentino, Italy
来源
RIVISTA DEL NUOVO CIMENTO | 2023年 / 46卷 / 03期
关键词
Nonequilibrium statistical mechanics; Anomalous transport; Thermal conversion; Coupled transport; Atomistic simulations; NONEQUILIBRIUM MOLECULAR-DYNAMICS; INTERACTING BOSE-GAS; THERMAL-CONDUCTIVITY; CARBON NANOTUBES; GRAPHENE; RECTIFICATION; PHONON; CHAINS; SYSTEMS; MODEL;
D O I
10.1007/s40766-023-00041-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Energy transfer in small nano-sized systems can be very different from that in their macroscopic counterparts due to reduced dimensionality, interaction with surfaces, disorder, and large fluctuations. Those ingredients may induce non-diffusive heat transfer that requires to be taken into account on small scales. We provide an overview of the recent advances in this field from the points of view of nonequilibrium statistical mechanics and atomistic simulations. We summarize the underlying basic properties leading to violations of the standard diffusive picture of heat transport and its universal features, with some historical perspective. We complete this scenario by illustrating also the effects of long-range interaction and integrability on non-diffusive transport. Then we discuss how all of these features can be exploited for thermal management, rectification and to improve the efficiency of energy conversion. We conclude with a review on recent achievements in atomistic simulations of anomalous heat transport in single polymers, nanotubes and two-dimensional materials. A short account of the existing experimental literature is also given.
引用
收藏
页码:105 / 161
页数:57
相关论文
共 50 条
  • [31] Molecular dynamics simulations of non-Fourier heat conduction
    Qixin Liu
    ProgressinNaturalScience, 2008, (08) : 999 - 1007
  • [32] Transient criterion of non-Fourier heat conduction law
    Yu, Ning
    Pan, Jiansheng
    Gu, Jianfeng
    Hu, Mingjuan
    Jiguang Jishu/Laser Technology, 2002, 26 (02):
  • [33] Non-Fourier heat conduction in an exponentially graded slab
    M. R. Raveshi
    Journal of Applied Mechanics and Technical Physics, 2016, 57 : 326 - 336
  • [34] Non-Fourier phonon heat conduction at the microscale and nanoscale
    Gang Chen
    Nature Reviews Physics, 2021, 3 : 555 - 569
  • [35] Molecular dynamics simulations of non-Fourier heat conduction
    Liu, Qixin
    Jiang, Peixue
    Xiang, Heng
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2008, 18 (08) : 999 - 1007
  • [36] Temperature in nonequilibrium states and non-Fourier heat conduction
    Dong, Yuan
    Cao, Bing-Yang
    Guo, Zeng-Yuan
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [37] Transient effects in the coupling of thermal radiation and non-Fourier heat transport at the nano-scale
    Becerril, D.
    de la Rosa, A. Camacho
    Esquivel-Sirvent, R.
    JOURNAL OF APPLIED PHYSICS, 2023, 134 (08)
  • [38] A non-Fourier analysis for transmitting heat in fins with internal heat generation
    Kundu, Balaram
    Lee, Kwan-Soo
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 64 : 1153 - 1162
  • [39] Inverse modeling of a solar collector involving Fourier and non-Fourier heat conduction
    Bhowmik, Arka
    Singla, Rohit K.
    Das, Ranjan
    Mallick, A.
    Repaka, R.
    APPLIED MATHEMATICAL MODELLING, 2014, 38 (21-22) : 5126 - 5148
  • [40] Fourier versus non-Fourier heat conduction in materials with a nonhomogeneous inner structure
    Herwig, H
    Beckert, K
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2000, 122 (02): : 363 - 365