Plasma-assisted CO2 decomposition catalyzed by CeO2 of various morphologies

被引:12
|
作者
Ji, Haohao [1 ]
Lin, Liangliang [1 ]
Chang, Kuan [1 ]
机构
[1] Jiangnan Univ, Int Joint Res Ctr Photorespons Mol & Mat, Sch Chem & Mat Engn, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金;
关键词
DBD plasma; Catalysis; CO2; decomposition; Cerium oxide; Oxygen vacancy; PACKING MATERIALS; LOW-TEMPERATURES; CARBON-DIOXIDE; DBD PLASMA; CONVERSION; FORMALDEHYDE; PERFORMANCE; METHANATION; REACTOR;
D O I
10.1016/j.jcou.2022.102351
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasma-assisted catalytic decomposition of CO2 over CeO2 nanocatalysts was investigated in this study. CeO2 nanocatalysts with different morphologies (i.e., cube, rod, and hexagon were prepared by hydrothermal method) were evaluated in a dielectric barrier discharge reaction at room temperature and atmospheric pressure. Among the above catalysts, commercial CeO2 and quartz sands, CeO2 nanorods (CeO2-R) exhibited the highest CO2 conversion under an applied voltage of 8 kV. When the discharge voltage was increased to 9 and 11 kV, all CeO2 catalysts showed increased CO2 conversion with little difference, but when the applied voltage was larger than 11 kV, the difference in catalytic performance became negligible. The better performance of CO2 activation over CeO2-R was attributed to the abundant oxygen vacancies on its exposed (110) crystal plane, which was further confirmed by XPS characterization. Oxygen vacancies on CeO2-R led to twice CO2 adsorption amount compared with the other CeO2 catalysts, and presented a more significant synergistic effect of oxygen vacancies and plasma on CO2 decomposition. The CO2 molecules adsorbed on oxygen vacancies over CeO2-R were partly activated and more easily decomposed in the plasma, resulting in higher CO2 conversion. Meanwhile, the minimum discharge voltage for CO2 decomposition over CeO2-R was 5.0 kV, which was 8.3 kV for commercial CeO2 due to its lowest oxygen vacancy density. However, due to the higher electron density and increased probability for free CO2 splitting under high discharge voltage, most CO2 molecules were activated by the plasma alone, thus less catalyst effect was observed.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Plasma-assisted low temperature ammonia decomposition on 3d transition metal (Fe, Co and Ni) doped CeO2 catalysts: Synergetic effect of morphology and co-doping
    Gao, Yibo
    Hu, Erjiang
    Yi, Yang
    Yin, Geyuan
    Huang, Zuohua
    FUEL PROCESSING TECHNOLOGY, 2023, 244
  • [42] The influence of CeO2 different morphologies effects on hydrodeoxygenation for guaiacol on Ni/CeO2 catalysts
    Jiang, Daxin
    Lin, Min
    Yan, Yuhao
    Zhan, Lulu
    Li, Rui
    Wu, Yulong
    RENEWABLE ENERGY, 2024, 237
  • [43] CO2 hydrogenation on Co/CeO2-δ catalyst: Morphology effect from CeO2 support
    Xie, Fengqiong
    Xu, Shiyu
    Deng, Lidan
    Xie, Hongmei
    Zhou, Guilin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (51) : 26938 - 26952
  • [44] Biomass-Assisted Synthesis of CeO2 Nanorods for CO2 Photoreduction under Visible Light
    Liu, Zhi
    Zheng, Jia
    Duan, Lianfeng
    Zhu, Zhi
    ACS APPLIED NANO MATERIALS, 2021, 4 (04) : 4226 - 4237
  • [45] Ultrasonically assisted surface modified CeO2 nanospindle catalysts for conversion of CO2 and methanol to DMC
    Kulthananat, Tachatad
    Kim-Lohsoontorn, Pattaraporn
    Seeharaj, Panpailin
    ULTRASONICS SONOCHEMISTRY, 2022, 90
  • [46] On the Mechanism of CO and CO2 Methanation Over Ni/CeO2 Catalysts
    Konishcheva, M. V.
    Potemkin, D. I.
    Badmaev, S. D.
    Snytnikov, P. V.
    Paukshtis, E. A.
    Sobyanin, V. A.
    Parmon, V. N.
    TOPICS IN CATALYSIS, 2016, 59 (15-16) : 1424 - 1430
  • [47] On the Mechanism of CO and CO2 Methanation Over Ni/CeO2 Catalysts
    M. V. Konishcheva
    D. I. Potemkin
    S. D. Badmaev
    P. V. Snytnikov
    E. A. Paukshtis
    V. A. Sobyanin
    V. N. Parmon
    Topics in Catalysis, 2016, 59 : 1424 - 1430
  • [48] Insights into the CO2 deoxygenation to CO over oxygen vacancies of CeO2
    Ju, Tz-Jie
    Wang, Chi-Han
    Lines, Shawn D.
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (09) : 2118 - 2124
  • [49] Dielectric Barrier Discharge Plasma-Assisted Catalytic CO2 Hydrogenation: Synergy of Catalyst and Plasma
    Gao, Xingyuan
    Liang, Jinglong
    Wu, Liqing
    Wu, Lixia
    Kawi, Sibudjing
    CATALYSTS, 2022, 12 (01)
  • [50] Plasma-assisted catalytic methanation of CO and CO2 over Ni-zeolite catalysts
    Jwa, E.
    Lee, S. B.
    Lee, H. W.
    Mok, Y. S.
    FUEL PROCESSING TECHNOLOGY, 2013, 108 : 89 - 93