Asymptotic multiplicities and Monge-Ampere masses (with an appendix by Sebastien Boucksom)

被引:1
|
作者
Kim, Dano [1 ,2 ]
Rashkovskii, Alexander [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[3] Univ Stavanger, Tek Nat, N-4036 Stavanger, Norway
关键词
32U05; 14F18; PLURISUBHARMONIC-FUNCTIONS; VALUATIONS; IDEALS; SINGULARITIES; DEFINITION; CONTINUITY; SEQUENCES; NUMBERS;
D O I
10.1007/s00208-022-02394-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Ein, Lazarsfeld and Smith asked whether 'equality' holds between two Samuel type asymptotic multiplicities for a graded system of zero-dimensional ideals on a smooth complex variety. We find a connection of this question to complex analysis by showing that the 'equality' is equivalent to a particular case of Demailly's strong continuity property on the convergence of residual Monge-Ampere masses under approximation of plurisubharmonic functions. On the other hand, in an appendix of this paper, Sebastien Boucksom gives an algebraic proof of the 'equality' in general, using the intersection theory of b-divisors. We then use these to show that Demailly's strong continuity holds for a new important class of plurisubharmonic functions.
引用
收藏
页码:1947 / 1972
页数:26
相关论文
共 50 条
  • [31] A Note on the Asymptotic Behavior of Parabolic Monge-Ampere Equations on Riemannian Manifolds
    Ru, Qiang
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [32] The asymptotic behavior of viscosity solutions of Monge-Ampere equations in half space
    Jia, Xiaobiao
    Li, Dongsheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 206
  • [33] Complex monge-ampere of a maximum
    Bedford, Eric
    Ma'u, Sione
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (01) : 95 - 101
  • [34] Complex Monge-Ampere Equations
    Phong, D. H.
    Song, Jian
    Sturm, Jacob
    IN MEMORY OF C.C. HSIUNG: LECTURES GIVEN AT THE JDG SYMPOSIUM, LEHIGH UNIVERSITY, JUNE 2010, 2012, 17 : 327 - +
  • [35] Monge-Ampere measures on subvarieties
    Ahag, Per
    Cegrell, Urban
    Pham Hoang Hiep
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 94 - 105
  • [36] The complex Monge-Ampere equation
    Kolodziej, S
    ACTA MATHEMATICA, 1998, 180 (01) : 69 - 117
  • [37] Generalized Monge-Ampere Capacities
    Di Nezza, Eleonora
    Lu, Chinh H.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (16) : 7287 - 7322
  • [38] Monge-Ampere boundary measures
    Cegrell, Urban
    Kemppe, Berit
    ANNALES POLONICI MATHEMATICI, 2009, 96 (02) : 175 - 196
  • [39] Singular Monge-Ampere foliations
    Duchamp, T
    Kalka, M
    MATHEMATISCHE ANNALEN, 2003, 325 (01) : 187 - 209
  • [40] ON ELLIPTIC MONGE-AMPERE EQUATIONS
    HARTMAN, P
    WINTNER, A
    AMERICAN JOURNAL OF MATHEMATICS, 1953, 75 (04) : 611 - 620