Advances in Quantum Machine Learning and Deep Learning for Image Classification: A Survey

被引:11
|
作者
Kharsa, Ruba [1 ]
Bouridane, Ahmed [2 ]
Amira, Abbes [1 ]
机构
[1] Univ Sharjah, Dept Comp Sci, Sharjah, U Arab Emirates
[2] Univ Sharjah, Dept Comp Engn, Sharjah, U Arab Emirates
关键词
Quantum Image Classification; Quantum Support Vector Machine; Quantum K Nearest Neighbor; Quantum Convolutional Neural Network; Variational Quantum Circuit; Quantum Tensor Network; TENSOR NETWORKS; NEURAL-NETWORKS; RECOGNITION; ALGORITHM;
D O I
10.1016/j.neucom.2023.126843
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image classification, which is a fundamental element of Computer Vision (CV) and Artificial Intelligence (AI), has been researched intensively in numerous domains and embedded in many products. However, with the exponential increase in the number of images and the complexity of the required tasks, deep-learning classifica-tion algorithms demand more intensive resources and computational power to train the models and update the massive number of parameters. Quantum computing is a new research technology with a promising capability of exponential speed up and operational parallelization with its unique phenomena including superposition and entanglement. Researchers have already started utilizing Quantum Deep Learning (QDL) and Quantum Machine Learning (QML) in image classification. Yet, to our knowledge, there exists no comprehensive published literature review on quantum image classification. Therefore, this paper analyzes the advances in this field by dividing the studies based on a unique taxonomy, discussing the limitations, summarizing essential aspects of each research, and finally, emphasizing the gaps, challenges, and recommendations. One of the key challenges presented in the paper is that quantum computers are in the Noisy Intermediate-Scale Quantum (NISQ) era, where they contain a limited number of noisy qubits, therefore challenging complex quantum classifiers and complex images from advanced datasets. This research recommends constructing a novel quantum image encoding method that adapts to the available number of qubits and enables RGB images as a critical contribution to the existing research.
引用
收藏
页数:22
相关论文
共 50 条
  • [31] Machine Learning and Deep Learning Techniques for Spectral Spatial Classification of Hyperspectral Images: A Comprehensive Survey
    Grewal, Reaya
    Kasana, Singara Singh
    Kasana, Geeta
    ELECTRONICS, 2023, 12 (03)
  • [32] Advances in deep neural network-based hyperspectral image classification and feature learning with limited samples: a survey
    Ullah, Farhan
    Ullah, Irfan
    Khan, Khalil
    Khan, Salabat
    Amin, Farhan
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [33] Advances and Vulnerabilities in Modern Cryptographic Techniques: A Comprehensive Survey on Cybersecurity in the Domain of Machine/Deep Learning and Quantum Techniques
    Mehmood, Abid
    Shafique, Arslan
    Alawida, Moatsum
    Khan, Abdul Nasir
    IEEE ACCESS, 2024, 12 : 27530 - 27555
  • [34] Comparative Analysis of Classical Machine Learning and Deep Learning Methods for Fruit Image Recognition and Classification
    Salim, Nareen O. M.
    Mohammed, Ahmed Khorsheed
    TRAITEMENT DU SIGNAL, 2024, 41 (03) : 1331 - 1343
  • [35] A Deep Learning and Machine Learning Approach for Image Classification of Tempered Images in Digital Forensic Analysis
    Chitti, Praveen
    Prabhushetty, K.
    Allagi, Shridhar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (11) : 589 - 593
  • [36] A Deep Learning and Machine Learning Approach for Image Classification of Tempered Images in Digital Forensic Analysis
    Chitti, Praveen
    Prabhushetty, K.
    Allagi, Shridhar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (10) : 589 - 593
  • [37] A survey: Deep learning for hyperspectral image classification with few labeled samples
    Jia, Sen
    Jiang, Shuguo
    Lin, Zhijie
    Li, Nanying
    Xu, Meng
    Yu, Shiqi
    NEUROCOMPUTING, 2021, 448 : 179 - 204
  • [38] Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: a review
    Tongwha Kim
    Kamran Behdinan
    Journal of Intelligent Manufacturing, 2023, 34 : 3215 - 3247
  • [39] Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: a review
    Kim, Tongwha
    Behdinan, Kamran
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (08) : 3215 - 3247
  • [40] Advances in Artificial Intelligence, Machine Learning and Deep Learning Applications
    Haleem, Muhammad Salman
    ELECTRONICS, 2023, 12 (18)