Online Parameter Identification for Fractional Order Model of Lithium Ion Battery via Adaptive Genetic Algorithm

被引:2
|
作者
Guo, Bin [1 ]
Sun, Huanli [2 ]
Zhao, Ziliang [1 ]
Liu, Yixin [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Transportat, Qingdao 266590, Peoples R China
[2] China FAW Grp Corp, Changchun 130011, Peoples R China
关键词
Fractional order model; adaptive genetic algorithm; online parameter identification; OF-CHARGE ESTIMATION; STATE;
D O I
10.1109/DDCLS58216.2023.10166251
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to overcome the shortcomings of the equivalent circuit model and the electrochemical model, a fractional impedance model is established based on the electrochemical impedance spectrum data, and the polarization effect is described in a simple and meaningful way using fractional elements. In this paper, we propose an online parameter identification method for fractional order model (FOM) of lithium ion battery, where an adaptive genetic algorithm is designed to estimation unknown parameters. To this end, an FOM is constructed by using the Grunwald-Letnikov (GL) definition. Then, an unscented kalman filter (UKF) method is adopted to estimate the internal model states. Based on the obtained states, an adaptive genetic algorithm (AGA) is designed to online identify the unknown parameters. Finally, comprehensive experimental verification results are provided to show the effectiveness of the proposed methods.
引用
收藏
页码:1227 / 1232
页数:6
相关论文
共 50 条
  • [21] Lithium-ion battery modeling and parameter identification based on fractional theory
    Hu, Minghui
    Li, Yunxiao
    Li, Shuxian
    Fu, Chunyun
    Qin, Datong
    Li, Zonghua
    ENERGY, 2018, 165 : 153 - 163
  • [22] A simplified fractional order impedance model and parameter identification method for lithium-ion batteries
    Yang, Qingxia
    Xu, Jun
    Cao, Binggang
    Li, Xiuqing
    PLOS ONE, 2017, 12 (02):
  • [23] Parameter Identification of Lithium-Ion Battery Model Based on African Vultures Optimization Algorithm
    Fahmy, Hend M.
    Sweif, Rania A.
    Hasanien, Hany M.
    Tostado-Veliz, Marcos
    Alharbi, Mohammed
    Jurado, Francisco
    MATHEMATICS, 2023, 11 (09)
  • [24] Online Parameter Identification for Lithium-ion Cell in Battery Management System
    Wang, Tiansi
    Pei, Lei
    Lu, Rengui
    Zhu, Chunbo
    Wu, Guoliang
    2014 IEEE VEHICLE POWER AND PROPULSION CONFERENCE (VPPC), 2014,
  • [25] An Information Appraisal Procedure: Endows Reliable Online Parameter Identification to Lithium-Ion Battery Model
    Du, Xinghao
    Meng, Jinhao
    Zhang, Yingmin
    Huang, Xinrong
    Wang, Shunliang
    Liu, Ping
    Liu, Tianqi
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (06) : 5889 - 5899
  • [26] Variable Fractional-Order Equivalent Circuit Model for Lithium-Ion Battery via Chaotic Adaptive Fractional Particle Swarm Optimization Method
    Wang, Deshun
    Wei, Haikun
    Xue, Jinhua
    Wu, Fubao
    Lopes, Antonio M.
    SYMMETRY-BASEL, 2022, 14 (11):
  • [27] Adaptive Parameter Identification Method and State of Charge Estimation of Lithium Ion Battery
    Sun, Dong
    Chen, Xikun
    2014 17TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2014, : 855 - 860
  • [28] A Simplified Fractional Order Modeling and Parameter Identification for Lithium-Ion Batteries
    Liu, Zheng
    Qiu, Yuan
    Feng, Jin
    Chen, Shaohang
    Yang, Chunshan
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2022, 19 (02)
  • [29] Fractional-order modeling and parameter identification for lithium-ion batteries
    Wang, Baojin
    Li, Shengbo Eben
    Peng, Huei
    Liu, Zhiyuan
    JOURNAL OF POWER SOURCES, 2015, 293 : 151 - 161
  • [30] Parameter Identification of Lithium Battery Model Based on Simulated Annealing Algorithm
    Luo Y.
    Qi P.
    Kan Y.
    Li P.
    Liu L.
    Cui H.
    Qiche Gongcheng/Automotive Engineering, 2018, 40 (12): : 1418 - 1425