Online Parameter Identification for Fractional Order Model of Lithium Ion Battery via Adaptive Genetic Algorithm

被引:2
|
作者
Guo, Bin [1 ]
Sun, Huanli [2 ]
Zhao, Ziliang [1 ]
Liu, Yixin [2 ]
机构
[1] Shandong Univ Sci & Technol, Coll Transportat, Qingdao 266590, Peoples R China
[2] China FAW Grp Corp, Changchun 130011, Peoples R China
关键词
Fractional order model; adaptive genetic algorithm; online parameter identification; OF-CHARGE ESTIMATION; STATE;
D O I
10.1109/DDCLS58216.2023.10166251
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In order to overcome the shortcomings of the equivalent circuit model and the electrochemical model, a fractional impedance model is established based on the electrochemical impedance spectrum data, and the polarization effect is described in a simple and meaningful way using fractional elements. In this paper, we propose an online parameter identification method for fractional order model (FOM) of lithium ion battery, where an adaptive genetic algorithm is designed to estimation unknown parameters. To this end, an FOM is constructed by using the Grunwald-Letnikov (GL) definition. Then, an unscented kalman filter (UKF) method is adopted to estimate the internal model states. Based on the obtained states, an adaptive genetic algorithm (AGA) is designed to online identify the unknown parameters. Finally, comprehensive experimental verification results are provided to show the effectiveness of the proposed methods.
引用
收藏
页码:1227 / 1232
页数:6
相关论文
共 50 条
  • [1] A novel online identification algorithm of lithium-ion battery parameters and model order based on a fractional order model
    Sun, Xiangdong
    Ji, Jingrun
    Ren, Biying
    Chen, Guitao
    Zhang, Qi
    IET RENEWABLE POWER GENERATION, 2021, 15 (11) : 2396 - 2408
  • [2] Parameter Identification Method for Fractional-order Model of Lithium-ion Battery
    Guo, Dongxu
    Yang, Geng
    Zhou, Xing
    Lu, Languang
    Ouyang, Minggao
    2018 IEEE INTERNATIONAL POWER ELECTRONICS AND APPLICATION CONFERENCE AND EXPOSITION (PEAC), 2018, : 1415 - 1420
  • [3] A Simplified Fractional Order Equivalent Circuit Model and Adaptive Online Parameter Identification Method for Lithium-Ion Batteries
    Wang, Jianlin
    Zhang, Le
    Xu, Dan
    Zhang, Peng
    Zhang, Gairu
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [4] A Novel Online Parameter Identification Algorithm for Fractional-Order Equivalent Circuit Model of Lithium-Ion Batteries
    Li, Lan
    Zhu, Huarong
    Zhou, Anjian
    Hu, Minghui
    Fu, Chunyun
    Qin, Datong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (07): : 6863 - 6879
  • [5] Online Parameter Estimation for Lithium-Ion Battery by Using Adaptive Observer for Fractional-Order System
    Takamatsu, Takahiro
    Ohmori, Hiromitsu
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2018, 101 (03) : 80 - 89
  • [6] Parameter and Order Identification of Fractional Systems with Application to a Lithium-Ion Battery
    Stark, Oliver
    Pfeifer, Martin
    Hohmann, Soeren
    MATHEMATICS, 2021, 9 (14)
  • [7] Parameter identification method for the variable order fractional-order equivalent model of lithium-ion battery
    Mao, Shunyong
    Yu, Zhihao
    Zhang, Zhenfu
    Lv, Baocai
    Sun, Zhezhe
    Huai, Ruituo
    Chang, Long
    Li, Hongyu
    JOURNAL OF ENERGY STORAGE, 2023, 57
  • [8] Parameter Identification of Fractional-order Model for Lithium-ion Batteries via a Neighborhood Differential Evolution Algorithm
    Yu, Kun-Jie
    Zhong, Ya-Zhe
    Yang, Duo
    Liang, Jing
    Liao, Yue-Feng
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1772 - 1777
  • [9] Online Parameter Identification of a Fractional Order Model
    Stark, Oliver
    Kupper, Martin
    Krebs, Stefan
    Hohmann, Soeren
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 2303 - 2309
  • [10] Open Circuit Voltage Equation parameter identification of Lithium Ion Battery Model using Genetic Algorithm
    Narayanan, S. Siva Suriya
    Thangavel, S.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 1122 - 1127