Stabilization and adiabatic control of antiferromagnetically coupled skyrmions without the topological Hall effect

被引:3
|
作者
Yagan, Rawana [1 ]
Cheghabouri, Arash Mousavi [1 ]
Onbasli, Mehmet C. [1 ,2 ]
机构
[1] Koc Univ, Dept Elect & Elect Engn, TR-34450 Istanbul, Turkiye
[2] Koc Univ, Dept Phys, TR-34450 Istanbul, Turkiye
来源
NANOSCALE ADVANCES | 2023年 / 5卷 / 17期
基金
欧洲研究理事会;
关键词
ANGULAR-DEPENDENCE; MAGNETIC SKYRMIONS;
D O I
10.1039/d3na00236e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Synthetic antiferromagnetically coupled (SAF) multilayers provide different physics of stabilizing skyrmions while eliminating the topological Hall effect (THE), enabling efficient and stable control. The effects of material parameters, external current drive, and a magnetic field on the skyrmion equilibrium and propagation characteristics are largely unresolved. Here, we present a computational and theoretical demonstration of the large window of material parameters that stabilize SAF skyrmions determined by saturation magnetization, uniaxial anisotropy, and Dzyaloshinskii-Moriya interaction. Current-driven SAF skyrmion velocities reach & SIM;200 m s(-1) without the THE. The SAF velocities are about 3-10 times greater than the typical ferromagnetic skyrmion velocities. The current densities needed for driving SAF skyrmions could be reduced to 10(8) A m(-2), while 10(11) A m(-2) or above is needed for ferromagnetic skyrmions. By reducing the SAF skyrmion drive current by 3 orders, Joule heating is reduced by 6 orders of magnitude. These results pave the way for new SAF interfaces with improved equilibrium, dynamics, and power savings in THE-free skyrmionics.
引用
收藏
页码:4470 / 4479
页数:10
相关论文
共 41 条
  • [21] Theory of the Topological Spin Hall Effect in Antiferromagnetic Skyrmions: Impact on Current-Induced Motion
    Akosa, C. A.
    Tretiakov, O. A.
    Tatara, G.
    Manchon, A.
    PHYSICAL REVIEW LETTERS, 2018, 121 (09)
  • [22] Colossal topological Hall effect at the transition between isolated and lattice-phase interfacial skyrmions
    Raju, M.
    Petrovic, A. P.
    Yagil, A.
    Denisov, K. S.
    Duong, N. K.
    Goebel, B.
    Sasioglu, E.
    Auslaender, O. M.
    Mertig, I.
    Rozhansky, I. V.
    Panagopoulos, C.
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [23] Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect
    Dong Liang
    John P. DeGrave
    Matthew J. Stolt
    Yoshinori Tokura
    Song Jin
    Nature Communications, 6
  • [24] Nucleation and annihilation of skyrmions in Mn2CoAl observed through the topological Hall effect
    B. M. Ludbrook
    G. Dubuis
    A.-H. Puichaud
    B. J. Ruck
    S. Granville
    Scientific Reports, 7
  • [25] Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect
    Liang, Dong
    DeGrave, John P.
    Stolt, Matthew J.
    Tokura, Yoshinori
    Jin, Song
    NATURE COMMUNICATIONS, 2015, 6
  • [26] Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect
    Aviv Karnieli
    Shai Tsesses
    Guy Bartal
    Ady Arie
    Nature Communications, 12
  • [27] Comment on "Robust Formation of Skyrmions and Topological Hall Effect Anomaly in Epitaxial Thin Films of MnSi" Reply
    Li, Yufan
    Kanazawa, N.
    Yu, X. Z.
    Kagawa, F.
    Tokura, Y.
    PHYSICAL REVIEW LETTERS, 2014, 112 (05)
  • [28] Emulating spin transport with nonlinear optics, from high-order skyrmions to the topological Hall effect
    Karnieli, Aviv
    Tsesses, Shai
    Bartal, Guy
    Arie, Ady
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [29] Topological quantum control: Edge currents via Floquet depinning of skyrmions in the v=0 graphene quantum Hall antiferromagnet
    Iyer, Deepak
    Foster, Matthew S.
    PHYSICAL REVIEW B, 2020, 101 (24)
  • [30] Room-Temperature Magnetic Skyrmions and Large Topological Hall Effect in Chromium Telluride Engineered by Self-Intercalation
    Zhang, Chenhui
    Liu, Chen
    Zhang, Junwei
    Yuan, Youyou
    Wen, Yan
    Li, Yan
    Zheng, Dongxing
    Zhang, Qiang
    Hou, Zhipeng
    Yin, Gen
    Liu, Kai
    Peng, Yong
    Zhang, Xi-Xiang
    ADVANCED MATERIALS, 2023, 35 (01)