Microstructure and mechanical properties of Ti-6Al-4V cruciform structure fabricated by coaxial electron beam wire-feed additive manufacturing

被引:7
|
作者
Wang, Mingzhi [1 ]
Hu, Jianan [1 ,2 ,3 ]
Zhu, Jing [1 ]
Zhang, Kai [1 ,4 ,5 ]
Kovalchuk, Dmytro [6 ]
Yang, Yi [1 ]
Wang, Hao [1 ]
Zhang, Lai-Chang [7 ]
Huang, Aijun [4 ,5 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat & Chem, Shanghai 200093, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, 72 Wenhua Rd, Shenyang 110016, Peoples R China
[3] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
[4] Monash Univ, Monash Ctr Addit Manufacture, Notting Hill, Vic 3168, Australia
[5] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[6] JSC NVO Chervona Hvilya, UA-03680 Kiev, Ukraine
[7] Edith Cowan Univ, Sch Engn, 270 Joondalup Dr, Perth, WA 6027, Australia
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Electron beam wire-feed additive; manufacturing; Ti-6Al-4V alloy; Cruciform structure; Microstructure; Mechanical properties; TITANIUM; COMPONENTS; STRATEGIES; BOUNDARY; TEXTURE; ORIGIN;
D O I
10.1016/j.jallcom.2023.170943
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Coaxial Electron Beam Wire-feed Additive Manufacturing (CAEBWAM), which is a novel additive manu-facturing process, can produce fully dense alloy components with equiaxed & beta; grains (EG & beta;) and isotropical mechanical properties and is considered as a potential manufacturing method for large-scale complex components. However, actual complex components inevitably include bonding regions, which are similar to welded joints, in the wire-feed deposition process, and limited knowledge is available on the micro-structures and mechanical properties for this kind of regions. This work thoroughly studied the micro-structures and mechanical properties of the Ti-6Al-4V alloy cruciform structure fabricated by CAEBWAM. It was found that the microstructure at the Bonding Zone (BZ) was composed of coarse columnar & beta; grains (CG & beta;), continuous grain boundary & alpha; (& alpha;GB) phase, and coarse & alpha; laths due to a higher temperature and poor heat dissipation condition. The average width of & alpha; lath in the BZ region was larger and the hardness was lower compared with those in the EG & beta; region. Tensile properties and fracture behaviours of the tensile samples extracted at cruciform structure were examined. The fracture tended to occur at the BZ region and exhibited a mixed fracture mode with trans-and inter-granular fractures. This work will improve the un-derstanding of microstructures and mechanical properties for representative cruciform structure in wire-feed AMed components, which would be conducive to further progress of the actual complex components.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Effect of germanium alloying on microstructure and properties of Ti-6Al-4V alloy fabricated by additive manufacturing
    Li, Changfu
    Bu, Jiaqi
    Wang, Xiangming
    Yang, Guang
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2023, 129 (05):
  • [32] THE EFFECT OF NIOBIUM ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTENITIC CrNi STEEL PRODUCED BY WIRE-FEED ELECTRON BEAM ADDITIVE MANUFACTURING
    Panchenko, Marina Yu
    Astafurova, Elena G.
    Moskvina, Valentina A.
    Maier, Galina G.
    Astafurov, Sergey, V
    Melnikov, Evgeny, V
    Reunova, Kseniya A.
    Rubtsov, Valery E.
    Kolubaev, Evgeny A.
    NANOSCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL, 2020, 11 (02) : 109 - 118
  • [33] Effect of normalizing temperature on microstructure and properties of Ti-6Al-4V fabricated by arc additive manufacturing
    Xu G.
    Liu J.
    Chen D.
    Ma R.
    Su Y.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2020, 41 (01): : 39 - 43
  • [34] Effect of Tool-Path on Morphology and Mechanical Properties of Ti-6Al-4V Fabricated by Wire and Arc Additive Manufacturing
    Fu, Jie
    Qiu, Kun
    Gong, Lin
    Liu, Changmeng
    Wu, Qianru
    Lu, Jiping
    Fan, Hongli
    2017 INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING (EITCE 2017), 2017, 128
  • [35] Electron Beam Additive Manufacturing of TiCx/Ti-6Al-4V Composite
    Builuk, Artem
    Kazachenok, Marina
    Martynov, Sergey
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019, 2019, 2167
  • [37] Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition
    Baufeld, Bernd
    Brandl, Erhard
    van der Biest, Omer
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2011, 211 (06) : 1146 - 1158
  • [38] Formability, microstructure and mechanical properties of Ti-6Al-4V deposited by wire and arc additive manufacturing with different deposition paths
    Zhou, Yefei
    Qin, Guangkuo
    Li, Lei
    Lu, Xin
    Jing, Ran
    Xing, Xiaolei
    Yang, Qingxiang
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 772
  • [39] Effects of Part Size on Microstructure and Mechanical Properties of Ti-6Al-4V Alloy Fabricated by Electron Beam Melting
    Wang Zhe
    Zhang Jun
    Li Shujun
    Hou Wentao
    Hao Yulin
    Yang Rui
    RARE METAL MATERIALS AND ENGINEERING, 2014, 43 : 161 - 164
  • [40] Effect of Cu content on microstructure and properties of Ti-6Al-4V alloy fabricated by double-wire arc additive manufacturing
    Tian, Yinbao
    Liang, Zhetao
    Zhang, Guoyang
    Liu, Hongqiang
    Jiang, Zhengyi
    Zhang, Xin
    Wang, Jingling
    Han, Jian
    Zhao, Xiaoxin
    MATERIALS TODAY COMMUNICATIONS, 2024, 39