Microstructure and mechanical properties of Ti-6Al-4V cruciform structure fabricated by coaxial electron beam wire-feed additive manufacturing

被引:7
|
作者
Wang, Mingzhi [1 ]
Hu, Jianan [1 ,2 ,3 ]
Zhu, Jing [1 ]
Zhang, Kai [1 ,4 ,5 ]
Kovalchuk, Dmytro [6 ]
Yang, Yi [1 ]
Wang, Hao [1 ]
Zhang, Lai-Chang [7 ]
Huang, Aijun [4 ,5 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Mat & Chem, Shanghai 200093, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shi Changxu Innovat Ctr Adv Mat, 72 Wenhua Rd, Shenyang 110016, Peoples R China
[3] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
[4] Monash Univ, Monash Ctr Addit Manufacture, Notting Hill, Vic 3168, Australia
[5] Monash Univ, Dept Mat Sci & Engn, Clayton, Vic 3800, Australia
[6] JSC NVO Chervona Hvilya, UA-03680 Kiev, Ukraine
[7] Edith Cowan Univ, Sch Engn, 270 Joondalup Dr, Perth, WA 6027, Australia
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Electron beam wire-feed additive; manufacturing; Ti-6Al-4V alloy; Cruciform structure; Microstructure; Mechanical properties; TITANIUM; COMPONENTS; STRATEGIES; BOUNDARY; TEXTURE; ORIGIN;
D O I
10.1016/j.jallcom.2023.170943
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Coaxial Electron Beam Wire-feed Additive Manufacturing (CAEBWAM), which is a novel additive manu-facturing process, can produce fully dense alloy components with equiaxed & beta; grains (EG & beta;) and isotropical mechanical properties and is considered as a potential manufacturing method for large-scale complex components. However, actual complex components inevitably include bonding regions, which are similar to welded joints, in the wire-feed deposition process, and limited knowledge is available on the micro-structures and mechanical properties for this kind of regions. This work thoroughly studied the micro-structures and mechanical properties of the Ti-6Al-4V alloy cruciform structure fabricated by CAEBWAM. It was found that the microstructure at the Bonding Zone (BZ) was composed of coarse columnar & beta; grains (CG & beta;), continuous grain boundary & alpha; (& alpha;GB) phase, and coarse & alpha; laths due to a higher temperature and poor heat dissipation condition. The average width of & alpha; lath in the BZ region was larger and the hardness was lower compared with those in the EG & beta; region. Tensile properties and fracture behaviours of the tensile samples extracted at cruciform structure were examined. The fracture tended to occur at the BZ region and exhibited a mixed fracture mode with trans-and inter-granular fractures. This work will improve the un-derstanding of microstructures and mechanical properties for representative cruciform structure in wire-feed AMed components, which would be conducive to further progress of the actual complex components.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effect of heat input on the microstructure and mechanical properties of Ti-6Al-4V alloy repaired by wire-feed electron beam additive manufacturing
    Tao, Xuewei
    Han, Ke
    Zhang, Shaolong
    Zhu, Yihao
    Zhang, Baosen
    Yao, Zhengjun
    Liu, Haixia
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 4674 - 4685
  • [2] Comparative Analysis of Weld Microstructure in Ti-6Al-4V Samples Produced by Rolling and Wire-Feed Electron Beam Additive Manufacturing
    Panin, A. V.
    Kazachenok, M. S.
    Krukovsky, K. V.
    Kazantseva, L. A.
    Martynov, S. A.
    PHYSICAL MESOMECHANICS, 2023, 26 (06) : 643 - 655
  • [3] Comparative Analysis of Weld Microstructure in Ti-6Al-4V Samples Produced by Rolling and Wire-Feed Electron Beam Additive Manufacturing
    A. V. Panin
    M. S. Kazachenok
    K. V. Krukovsky
    L. A. Kazantseva
    S. A. Martynov
    Physical Mesomechanics, 2023, 26 : 643 - 655
  • [4] Modification of the Column Structure of Wire-Feed Electron-Beam Additive Manufactured Ti-6Al-4V Alloy
    Savchenko, N. L.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019, 2019, 2167
  • [5] Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Electron Beam Melting
    Ran, Jiangtao
    Jiang, Fengchun
    Sun, Xiaojing
    Chen, Zhuo
    Tian, Cao
    Zhao, Hong
    CRYSTALS, 2020, 10 (11): : 1 - 18
  • [6] Microstructure and Mechanical Properties of Ti-6Al-4V by Electron Beam Rapid Manufacturing
    Suo Hongbo
    Chen Zheyuan
    Liu Jianrong
    Gong Shuili
    Xiao Jianzhong
    RARE METAL MATERIALS AND ENGINEERING, 2014, 43 (04) : 780 - 785
  • [7] Tailoring equiaxed β-grain structures in Ti-6Al-4V coaxial electron beam wire additive manufacturing
    Davis, A. E.
    Kennedy, J. R.
    Strong, D.
    Kovalchuk, D.
    Porter, S.
    Prangnell, P. B.
    MATERIALIA, 2021, 20
  • [8] Microstructure and Mechanical Properties of TC11 Titanium Alloy Fabricated by Wire-feed Electron Beam Additive Manufacturing
    Zhang, Guodong
    Zhang, Peng
    Gao, Jianshi
    Yu, Huai
    Yuan, Hong
    Ding, Ning
    Xiong, Huaping
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2023, 59 (04): : 105 - 112
  • [9] Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM)
    Brandl, Erhard
    Schoberth, Achim
    Leyens, Christoph
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 532 : 295 - 307
  • [10] Effect of Heat Treatment on Microstructure and Tensile Properties of Ti-6Al-4V Alloy Produced by Coaxial Electron Beam Wire Feeding Additive Manufacturing
    Hu, Jianan
    Zhang, Jiahua
    Wei, Ya
    Chen, Hao
    Yang, Yi
    Wu, Songquan
    Kovalchuk, Dmytro
    Liang, Enquan
    Zhang, Xi
    Wang, Hao
    Huang, Aijun
    JOM, 2021, 73 (07) : 2241 - 2249