Existence of Solutions for a Quasilinear Schrodinger Equation with Potential Vanishing

被引:0
|
作者
Xue, Yan-fang [1 ]
Han, Jian-xin [1 ]
Zhu, Xin-cai [1 ]
机构
[1] Xinyang Normal Univ, Sch Math & Stat, Xinyang 464000, Henan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
quasilinear Schrodinger equation; vanishing potential; asymptotically cubic; mountain pass theorem; SOLITON-SOLUTIONS;
D O I
10.1007/s10255-023-1083-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the following quasilinear Schrodinger equation -Delta u + V(x)u-Delta(u(2))u = K(x)g(u); x epsilon R-3; where the nonlinearity g (u) is asymptotically cubic at infinity, the potential V (x) may vanish at infinity. Under appropriate assumptions on K(x), we establish the existence of a nontrivial solution by using the mountain pass theorem.
引用
收藏
页码:696 / 706
页数:11
相关论文
共 50 条
  • [41] Existence results for a class of quasilinear Schrodinger equations with singular or vanishing potentials
    Badiale, Marino
    Guida, Michela
    Rolando, Sergio
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 220
  • [42] Existence of long time solutions and validity of the nonlinear Schrodinger approximation for a quasilinear dispersive equation
    Duell, Wolf-Patrick
    Hess, Max
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (04) : 2598 - 2632
  • [43] Existence and multiplicity results for a multiparameter quasilinear Schrodinger equation
    Correa, Francisco Julio S. A.
    dos Santos, Gelson C. G.
    Tavares, Leandro S.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2023, 13 (05)
  • [44] Sharp conditions of global existence for the quasilinear Schrodinger equation
    Zhang, J.
    Shu, J.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2008, 42 (02) : 135 - 140
  • [45] Existence of a Ground State Solution for a Quasilinear Schrodinger Equation
    Fang, Xiang-dong
    Han, Zhi-qing
    ADVANCED NONLINEAR STUDIES, 2014, 14 (04) : 941 - 950
  • [46] Existence of positive solutions for a class of p-Laplacian type generalized quasilinear Schrodinger equations with critical growth and potential vanishing at infinity
    Li, Zhen
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2023, (03) : 1 - 20
  • [47] Positive solutions for a class of quasilinear Schrodinger equations with vanishing potentials
    Liu, Xiaonan
    Chen, Haibo
    BOUNDARY VALUE PROBLEMS, 2017,
  • [48] Ground state solutions for the quasilinear Schrodinger equation
    Guo, Yuxia
    Tang, Zhongwei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (06) : 3235 - 3248
  • [49] Nonexistence of stable solutions for quasilinear Schrodinger equation
    Chen, Lijuan
    Chen, Caisheng
    Yang, Hongwei
    Song, Hongxue
    BOUNDARY VALUE PROBLEMS, 2018,
  • [50] Ground State Solutions for a Quasilinear Schrodinger Equation
    Zhang, Jian
    Lin, Xiaoyan
    Tang, Xianhua
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)