Mapping tree species diversity in temperate montane forests using Sentinel-1 and Sentinel-2 imagery and topography data

被引:37
|
作者
Liu, Xiang [1 ]
Frey, Julian [2 ]
Munteanu, Catalina [3 ]
Still, Nicole [4 ]
Koch, Barbara [1 ]
机构
[1] Univ Freiburg, Chair Remote Sensing & Landscape Informat Syst, D-79106 Freiburg, Germany
[2] Univ Freiburg, Chair Forest Growth & Dendroecol, D-79106 Freiburg, Germany
[3] Univ Freiburg, Chair Wildlife Ecol & Management, D-79106 Freiburg, Germany
[4] Univ Freiburg, Chair Forestry Econ & Forest Planning, D-79106 Freiburg, Germany
关键词
Tree species diversity; Sentinel-1; Sentinel-2; Spectral variability hypothesis; Spectral heterogeneity metrics; Topographic data; NORWAY SPRUCE; TIME-SERIES; SILVER FIR; VEGETATION; RESOLUTION; RICHNESS; BIODIVERSITY; SOIL; CLASSIFICATION; INDEX;
D O I
10.1016/j.rse.2023.113576
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Detailed information on spatial patterns of tree species diversity (TSD) is essential for biodiversity assessment, forest disturbance monitoring, and the management and conservation of forest resources. TSD mapping ap-proaches based on the Spectral Variability Hypothesis (SVH) could provide a reliable alternative to image classification methods. However, such methods have not been tested in large-scale TSD mapping using Sentinel-1 and Sentinel-2 images. In this study, we developed a new workflow for large-scale TSD mapping in an approximately 4000 km2 temperate montane forest using Sentinel-1 and Sentinel-2 imagery-based heterogeneity metrics and topographic data. Through a systematic comparison of model performance in 24 prediction scenarios with different combinations of input variables, and a correlation analysis between six image heterogeneity metrics and two in-situ TSD indicators (species richness S and Shannon-Wiener diversity H '), we assessed the effects of vegetation phenology, image heterogeneity metrics, and sensor type on the accuracy of TSD pre-dictions. Our results show that (1) the combination of Sentinel-1 and Sentinel-2 imagery produced higher ac-curacy of TSD predictions compared to the Sentinel-2 data alone, and that the further inclusion of topographic data yielded the highest accuracy (S: R2 = 0.562, RMSE = 1.502; H ': R2 = 0.628, RMSE = 0.231); (2) both Multi -Temporal and Spectral-Temporal-Metric data capture phenology-related information of tree species and signif-icantly improved the accuracy of TSD predictions; (3) texture metrics outperformed other image heterogeneity metrics (i.e., Coefficient of Variation, Rao's Q, Convex Hull Volume, Spectral Angle Mapper, and the Convex Hull Area), and the enhanced vegetation index (EVI) derived image heterogeneity metrics were most effective in predicting TSD; and (4) the spatial distribution of TSD showed a clear decrease trend along the altitudinal gradient (r = -0.61 for S and -0.45 for H ') and varied significantly among forest types. Our results suggest a good potential of the SVH-based approaches combined with Sentinel-1 and Sentinel-2 imagery and topographic data for large-scale TSD mapping in temperate montane forests. The TSD maps generated in our study will be valuable for forest biodiversity assessments and for developing management and conservation measures.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale
    Shrestha, Binita
    Ahmad, Sajjad
    Stephen, Haroon
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (09)
  • [22] An evaluation of Landsat, Sentinel-2, Sentinel-1 and MODIS data for crop type mapping
    Song, Xiao-Peng
    Huang, Wenli
    Hansen, Matthew C.
    Potapov, Peter
    SCIENCE OF REMOTE SENSING, 2021, 3
  • [23] Deep learning-based building height mapping using Sentinel-1 and Sentinel-2 data
    Cai, Bowen
    Shao, Zhenfeng
    Huang, Xiao
    Zhou, Xuechao
    Fang, Shenghui
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 122
  • [24] Fast Urban Land Cover Mapping Exploiting Sentinel-1 and Sentinel-2 Data
    Petrushevsky, Naomi
    Manzoni, Marco
    Monti-Guarnieri, Andrea
    REMOTE SENSING, 2022, 14 (01)
  • [25] Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data
    Monde Rapiya
    Abel Ramoelo
    Wayne Truter
    Environmental Monitoring and Assessment, 2023, 195
  • [26] Fusion of Sentinel-1 and Sentinel-2 data in mapping the impervious surfaces at city scale
    Binita Shrestha
    Sajjad Ahmad
    Haroon Stephen
    Environmental Monitoring and Assessment, 2021, 193
  • [27] Seasonal evaluation and mapping of aboveground biomass in natural rangelands using Sentinel-1 and Sentinel-2 data
    Rapiya, Monde
    Ramoelo, Abel
    Truter, Wayne
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (12)
  • [28] An Operational Framework for Mapping Irrigated Areas at Plot Scale Using Sentinel-1 and Sentinel-2 Data
    Bazzi, Hassan
    Baghdadi, Nicolas
    Amin, Ghaith
    Fayad, Ibrahim
    Zribi, Mehrez
    Demarez, Valerie
    Belhouchette, Hatem
    REMOTE SENSING, 2021, 13 (13)
  • [29] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    SENSORS, 2020, 20 (10)
  • [30] EVALUATION OF BURNT BUILDING DAMAGE USING SENTINEL-1 AND SENTINEL-2 DATA
    Jung, Jungkyo
    Yun, Sang-Ho
    Xu, Jeri
    Xie, Boyi
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6875 - 6878