Explainability-driven model improvement for SOH estimation of lithium-ion battery

被引:52
|
作者
Wang, Fujin
Zhao, Zhibin [1 ]
Zhai, Zhi
Shang, Zuogang
Yan, Ruqiang
Chen, Xuefeng
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
关键词
Lithium-ion battery; State-of-health (SOH); Estimation; Explainability-driven; Layer-wise relevance propagation (LRP); PROGNOSTICS;
D O I
10.1016/j.ress.2022.109046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deep neural networks have been widely used in battery health management, including state-of-health (SOH) estimation and remaining useful life (RUL) prediction, with great success. However, traditional neural networks still lack transparency in terms of explainability due to their "black-box" nature. Although a number of explanation methods have been reported, there is still a gap in research efforts towards improving the model benefiting from explanations. To bridge this gap, we propose an explainability-driven model improvement framework for lithium-ion battery SOH estimation. To be specific, the post-hoc explanation technique is used to explain the model. Beyond explaining, we feed the insights back to model to guide model training. Thus, the trained model is inherently explainable, and the performance of the model can be improved. The superiority and effectiveness of the proposed framework are validated on different datasets and different models. The experimental results show that the proposed framework can not only explain the decision of the model, but also improve the model's performance. Our code is open source and available at: https://github.com/wang-fujin/Explainability-driven_SOH.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] AN LSTM-DRIVEN SIMULATION APPROACH FOR SOC & SOH ESTIMATION OF A LITHIUM-ION CELL
    Dhanagare, Tejas
    Singh, Shikha
    Pandey, Vijitashwa
    PROCEEDINGS OF ASME 2023 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2023, VOL 5, 2023,
  • [22] A novel data-driven SOH prediction model for lithium-ion batteries
    Kheirkhah-Rad, Ehsan
    Moeini-Aghtaie, Moein
    PROCEEDINGS OF 2021 31ST AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), 2021,
  • [23] A Numerical Model of Lithium-Ion Battery for a Life Estimation
    Nagaoka, Naoto
    2013 48TH INTERNATIONAL UNIVERSITIES' POWER ENGINEERING CONFERENCE (UPEC), 2013,
  • [24] Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
    Yu Guo
    Dongfang Yang
    Yang Zhang
    Licheng Wang
    Kai Wang
    Protection and Control of Modern Power Systems, 2022, 7
  • [25] A novel data-driven IBA-ELM model for SOH / SOC estimation of lithium-ion batteries
    Ge, Dongdong
    Jin, Guiyang
    Wang, Jianqiang
    Zhang, Zhendong
    ENERGY, 2024, 305
  • [26] SOC and SOH Joint Estimation of Lithium-Ion Battery Based on Improved Particle Filter Algorithm
    Wu, Tiezhou
    Liu, Sizhe
    Wang, Zhikun
    Huang, Yiheng
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2022, 17 (01) : 307 - 317
  • [27] Study on Lithium-ion Battery SOH Estimation Based on Incremental Capacity Analysis and Deep Learning
    Park M.-S.
    Kim J.-S.
    Kim B.-W.
    Transactions of the Korean Institute of Electrical Engineers, 2024, 73 (02): : 349 - 357
  • [28] SOH Estimation of Lithium-Ion Battery Pack Based on Integrated State Information from Cells
    Wang, Xiaohong
    Fan, Wenhui
    Li, Shixiang
    Li, Xinjun
    Wang, Lizhi
    APPLIED SCIENCES-BASEL, 2020, 10 (19):
  • [29] A SOH Estimation Study on Lithium-Ion Battery based on Incremental Capacity and Differential Voltage Analysis
    Park, Seong Yun
    Lee, Pyeong Yeon
    Yoo, Ki Soo
    Kim, Jong Hoon
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2021, 45 (03) : 259 - 266
  • [30] Online estimation of SOH for lithium-ion battery based on SSA-Elman neural network
    Guo, Yu
    Yang, Dongfang
    Zhang, Yang
    Wang, Licheng
    Wang, Kai
    PROTECTION AND CONTROL OF MODERN POWER SYSTEMS, 2022, 7 (01)