Explainability-driven model improvement for SOH estimation of lithium-ion battery

被引:52
|
作者
Wang, Fujin
Zhao, Zhibin [1 ]
Zhai, Zhi
Shang, Zuogang
Yan, Ruqiang
Chen, Xuefeng
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Peoples R China
关键词
Lithium-ion battery; State-of-health (SOH); Estimation; Explainability-driven; Layer-wise relevance propagation (LRP); PROGNOSTICS;
D O I
10.1016/j.ress.2022.109046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Deep neural networks have been widely used in battery health management, including state-of-health (SOH) estimation and remaining useful life (RUL) prediction, with great success. However, traditional neural networks still lack transparency in terms of explainability due to their "black-box" nature. Although a number of explanation methods have been reported, there is still a gap in research efforts towards improving the model benefiting from explanations. To bridge this gap, we propose an explainability-driven model improvement framework for lithium-ion battery SOH estimation. To be specific, the post-hoc explanation technique is used to explain the model. Beyond explaining, we feed the insights back to model to guide model training. Thus, the trained model is inherently explainable, and the performance of the model can be improved. The superiority and effectiveness of the proposed framework are validated on different datasets and different models. The experimental results show that the proposed framework can not only explain the decision of the model, but also improve the model's performance. Our code is open source and available at: https://github.com/wang-fujin/Explainability-driven_SOH.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Progress of model based SOC and SOH estimation methods for lithium-ion battery
    Shen J.
    He Y.
    Ma Z.
    Ma, Zifeng (zfma@sjtu.edu.cn), 2018, Materials China (69): : 309 - 316
  • [2] Lithium-ion Battery SOH Estimation with Varying Amount of Battery Operation Data
    Li, Xingjun
    Yu, Dan
    Vilsen, Soren Byg
    Store, Daniel-Ioan
    2023 25TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, EPE'23 ECCE EUROPE, 2023,
  • [3] SOH Estimation Method of Lithium-ion Battery Based on TCN Encoding
    Zhou
    Cheng Z.
    Gong Q.
    Liu X.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2023, 50 (04): : 185 - 192
  • [4] Multiobjective Optimization of Data-Driven Model for Lithium-Ion Battery SOH Estimation With Short-Term Feature
    Cai, Lei
    Meng, Jinhao
    Stroe, Daniel-Ioan
    Peng, Jichang
    Luo, Guangzhao
    Teodorescu, Remus
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2020, 35 (11) : 11855 - 11864
  • [5] Lithium-ion Battery SOH Estimation and Fault Diagnosis with Missing Data
    Yang, Ang
    Wang, Yu
    Tsui, Kowk Leung
    Zi, Yanyang
    2019 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC), 2019,
  • [6] SOH Estimation Method for Lithium-ion Battery Based on Discharge Characteristics
    Yu, Zhilong
    Zhang, Yekai
    Qi, Lihua
    Li, Ran
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (07):
  • [7] A framework of joint SOC and SOH estimation for lithium-ion batteries: Using BiLSTM as a battery model
    Li, Shuhua
    Jiang, Zelong
    Zhu, Zhongwen
    Jiang, Weihai
    Ma, Yan
    Sang, Xuan
    Yang, Shiyi
    JOURNAL OF POWER SOURCES, 2025, 635
  • [8] Lithium-ion battery SOC/SOH adaptive estimation via simplified single particle model
    Cen, Zhaohui
    Kubiak, Pierre
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (15) : 12444 - 12459
  • [9] An Online SOC and SOH Estimation Model for Lithium-Ion Batteries
    Huang, Shyh-Chin
    Tseng, Kuo-Hsin
    Liang, Jin-Wei
    Chang, Chung-Liang
    Pecht, Michael G.
    ENERGIES, 2017, 10 (04):
  • [10] A New SOH Prediction Model for Lithium-ion Battery for Electric Vehicles
    Han, Huachun
    Xu, Haiping
    Yuan, Zengquan
    Shen, Yanling
    2014 17TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2014, : 997 - 1002