Two criteria for locally noetherian Grothendieck categories

被引:0
|
作者
Banerjee, Abhishek [1 ]
机构
[1] Indian Inst Sci, Dept Math, Bangalore, India
关键词
Finitely injective objects; Local summands; Chain conditions; Grothendieck categories; INDECOMPOSABLE DECOMPOSITIONS; DIRECT SUMS; RINGS; MODULES; THEOREM;
D O I
10.1016/j.jpaa.2022.107233
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give two criteria for a Grothendieck category to be locally noetherian. The first of these is in terms of direct sum decompositions into uniform components. The second is related to the existence of finitely injective objects that cannot be expressed as a direct sum of injectives.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] COLIMITS OF INJECTIVES IN GROTHENDIECK CATEGORIES
    SIMSON, D
    ARKIV FOR MATEMATIK, 1974, 12 (02): : 161 - 165
  • [32] Grothendieck categories of enriched functors
    Al Hwaeer, Hassan
    Garkusha, Grigory
    JOURNAL OF ALGEBRA, 2016, 450 : 204 - 241
  • [33] Localization on certain Grothendieck categories
    F. Castaño-Iglesias
    N. Chifan
    C. Năstăsescu
    Acta Mathematica Sinica, English Series, 2009, 25 : 379 - 392
  • [34] Grothendieck groups in extriangulated categories
    Zhu, Bin
    Zhuang, Xiao
    JOURNAL OF ALGEBRA, 2021, 574 : 206 - 232
  • [35] Grothendieck groups for categories of complexes
    Foxby, Hans-Bjorn
    Halvorsen, Esben Bistrup
    JOURNAL OF K-THEORY, 2009, 3 (01) : 165 - 203
  • [36] Grothendieck ring of pretriangulated categories
    Bondal, AI
    Larsen, M
    Lunts, VA
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (29) : 1461 - 1495
  • [37] On a natural duality between Grothendieck categories
    Castano-Iglesias, F.
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (06) : 2079 - 2091
  • [38] A Note on Regular Objects in Grothendieck Categories
    S. Dăscălescu
    C. Năstăsescu
    A. Tudorache
    Arabian Journal for Science and Engineering, 2011, 36 : 957 - 962
  • [39] Resolution of unbounded complexes in Grothendieck categories
    Serpé, C
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2003, 177 (01) : 103 - 112
  • [40] The Exchange Property in Grothendieck Categories: Applications
    Daus, L.
    Nastasescu, C.
    Salim, M.
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (04) : 1433 - 1442