Learning representations for image-based profiling of perturbations

被引:14
|
作者
Moshkov, Nikita [1 ]
Bornholdt, Michael [2 ]
Benoit, Santiago [2 ,3 ]
Smith, Matthew [2 ,4 ]
Mcquin, Claire [2 ]
Goodman, Allen [2 ]
Senft, Rebecca A. [2 ]
Han, Yu [2 ]
Babadi, Mehrtash [2 ]
Horvath, Peter [1 ]
Cimini, Beth A. [2 ]
Carpenter, Anne E. [2 ]
Singh, Shantanu [2 ]
Caicedo, Juan C. [2 ,5 ,6 ]
机构
[1] HUN REN Biol Res Ctr, 62 Temesvar Krt, H-6726 Szeged, Hungary
[2] Broad Inst MIT & Harvard, 415 Main St, Cambridge, MA 02141 USA
[3] Carnegie Mellon Univ, 5000 Forbes Ave, Pittsburgh, PA 15213 USA
[4] Harvard Univ, 86 Brattle St, Cambridge, MA 02138 USA
[5] Morgridge Inst Res, 330 N Orchard St, Madison, WI 53715 USA
[6] Univ Wisconsin Madison, Dept Biostat & Med Informat, 1300 Univ Ave, Madison, WI 53706 USA
基金
欧盟地平线“2020”;
关键词
ASSAY;
D O I
10.1038/s41467-024-45999-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Measuring the phenotypic effect of treatments on cells through imaging assays is an efficient and powerful way of studying cell biology, and requires computational methods for transforming images into quantitative data. Here, we present an improved strategy for learning representations of treatment effects from high-throughput imaging, following a causal interpretation. We use weakly supervised learning for modeling associations between images and treatments, and show that it encodes both confounding factors and phenotypic features in the learned representation. To facilitate their separation, we constructed a large training dataset with images from five different studies to maximize experimental diversity, following insights from our causal analysis. Training a model with this dataset successfully improves downstream performance, and produces a reusable convolutional network for image-based profiling, which we call Cell Painting CNN. We evaluated our strategy on three publicly available Cell Painting datasets, and observed that the Cell Painting CNN improves performance in downstream analysis up to 30% with respect to classical features, while also being more computationally efficient. Assessing cell phenotypes in image-based assays requires solid computational methods for transforming images into quantitative data. Here, the authors present a strategy for learning representations of treatment effects from high-throughput imaging, following a causal interpretation.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Optimizing the Cell Painting assay for image-based profiling
    Cimini, Beth A.
    Chandrasekaran, Srinivas Niranj
    Kost-Alimova, Maria
    Miller, Lisa
    Goodale, Amy
    Fritchman, Briana
    Byrne, Patrick
    Garg, Sakshi
    Jamali, Nasim
    Logan, David J.
    Concannon, John B.
    Lardeau, Charles-Hugues
    Mouchet, Elizabeth
    Singh, Shantanu
    Abbasi, Hamdah Shafqat
    Aspesi, Jr Peter
    Boyd, Justin D.
    Gilbert, Tamara
    Gnutt, David
    Hariharan, Santosh
    Hernandez, Desiree
    Hormel, Gisela
    Juhani, Karolina
    Melanson, Michelle
    Mervin, Lewis H.
    Monteverde, Tiziana
    Pilling, James E.
    Skepner, Adam
    Swalley, Susanne E.
    Vrcic, Anita
    Weisbart, Erin
    Williams, Guy
    Yu, Shan
    Zapiec, Bolek
    Carpenter, Anne E.
    NATURE PROTOCOLS, 2023, 18 (07) : 1981 - +
  • [22] Optimizing the Cell Painting assay for image-based profiling
    Beth A. Cimini
    Srinivas Niranj Chandrasekaran
    Maria Kost-Alimova
    Lisa Miller
    Amy Goodale
    Briana Fritchman
    Patrick Byrne
    Sakshi Garg
    Nasim Jamali
    David J. Logan
    John B. Concannon
    Charles-Hugues Lardeau
    Elizabeth Mouchet
    Shantanu Singh
    Hamdah Shafqat Abbasi
    Peter Aspesi
    Justin D. Boyd
    Tamara Gilbert
    David Gnutt
    Santosh Hariharan
    Desiree Hernandez
    Gisela Hormel
    Karolina Juhani
    Michelle Melanson
    Lewis H. Mervin
    Tiziana Monteverde
    James E. Pilling
    Adam Skepner
    Susanne E. Swalley
    Anita Vrcic
    Erin Weisbart
    Guy Williams
    Shan Yu
    Bolek Zapiec
    Anne E. Carpenter
    Nature Protocols, 2023, 18 : 1981 - 2013
  • [23] Is object search mediated by object-based or image-based representations?
    Newell, FN
    Brown, V
    Findlay, JM
    SPATIAL VISION, 2004, 17 (4-5): : 511 - 541
  • [24] On object-based compression for a class of dynamic image-based representations
    Wu, Q
    Ng, KT
    Chan, SC
    Shum, HY
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 3253 - 3256
  • [25] Object tracking and matting for a class of dynamic image-based representations
    Gan, ZF
    Chan, SC
    Shum, HY
    AVSS 2005: ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, PROCEEDINGS, 2005, : 81 - 86
  • [26] Combining Structural Descriptions and Image-based Representations for Image, Object, and Scene Recognition
    Do Huu, Nicolas
    Paquier, Williams
    Chatila, Raja
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1452 - 1457
  • [27] Image-based profiling: a powerful and challenging new data type
    Way, Gregory P.
    Spitzer, Hannah
    Burnham, Philip
    Raj, Arjun
    Theis, Fabian
    Singh, Shantanu
    Carpenter, Anne E.
    BIOCOMPUTING 2022, PSB 2022, 2022, : 407 - 411
  • [28] Deep Learning in Image-Based Plant Phenotyping
    Murphy, Katherine M.
    Ludwig, Ella
    Gutierrez, Jorge
    Gehan, Malia A.
    ANNUAL REVIEW OF PLANT BIOLOGY, 2024, 75 : 771 - 795
  • [29] Towards a Privacy Respecting Image-based User Profiling Component
    Galopoulos, Panagiotis
    Iakovidou, Chryssanthi
    Gkatziaki, Vasiliki
    Papadopoulos, Symeon
    Kompatsiaris, Yiannis
    2021 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2021, : 17 - 22
  • [30] Image-based Profiling of Mesenchymal Stem Cells for Quality Assessment
    Matsumoto, M.
    Fujitani, M.
    Sasaki, H.
    Kanie, K.
    Kiyota, Y.
    Honda, H.
    Kato, R.
    TISSUE ENGINEERING PART A, 2015, 21 : S367 - S367