Metformin inhibits high glucose-induced apoptosis of renal podocyte through regulating miR-34a/SIRT1 axis

被引:0
|
作者
Zhuang, Xudong [1 ]
Sun, Zhuye [2 ]
Du, Huasheng [3 ]
Zhou, Tianhui [4 ]
Zou, Jing [1 ]
Fu, Wei [5 ,6 ]
机构
[1] Linyi Tradit Chinese Med Hosp, Dept Dialysis, Linyi, Shandong, Peoples R China
[2] Rizhao Hosp Tradit Chinese Med, Dept Pharm, Rizhao, Shandong, Peoples R China
[3] Qingdao Municipal Hosp, Dept Nephrol, Qingdao, Shandong, Peoples R China
[4] Beijing Univ Chinese Med, Beijing, Peoples R China
[5] Zibo Cent Hosp, Dept Drug Dispensing, Zibo, Shandong, Peoples R China
[6] Zibo Cent Hosp, Dept Drug Dispensing, 54 Gongqingtuanxi Rd, Zibo 255036, Shandong, Peoples R China
关键词
DN; metformin; miR-34a; podocyte; SIRT1; DIABETIC-NEPHROPATHY; MOLECULAR-MECHANISMS; OXIDATIVE STRESS; MICRORNA-34A; MICROALBUMINURIA; HYPERGLYCEMIA; HYPERTROPHY; CELLS; MICE;
D O I
10.1002/iid3.1053
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
BackgroundPrevious studies have reported SIRT1 was inversely modulated by miR-34a, However, mechanism of metformin (MFN)'s renal podocyte protection under high glucose (HG) conditions and the connection between miR-34a and SIRT1 expression in diabetic nephropathy (DN) remain unclear.MethodWe aimed to further elucidate the role of miR-34a in HG-treated podocytes in DN. A conditionally immortalized human podocyte cell line was cultivated in d-glucose (30 mM).ResultsMicroarray and RT-qPCR revealed that miR-34a was downregulated in HG-treated podocytes. Additionally, miR-34a levels increased in MFN-treated HG-induced podocytes. CCK-8 assay, colony formation assay, flow cytometry, and Western blot detection showed that HG treatment reduced cell viability and promoted via HG treatment, and MFN treatment reversed this phenotypic change. MiR-34a upregulation caused restored cell viability and suppressed cell apoptosis in HG-treated podocytes, and miR-34a downregulation led to damaged cell survival and induced apoptosis in MFN-administered and HG-treated podocytes. The dual luciferase reporter assay showed that SIRT1 3 '-UTR was a direct miR-34a target. Further studies demonstrated an elevation in SIRT1 levels in HG-exposed podocytes, whereas MFN treatment decreased SIRT1 levels. In addition, miR-34a upregulation led to reduced SIRT1 expression, whereas miR-34a inhibition increased SIRT1 levels in cells. MFN-induced miR-34a suppresses podocyte apoptosis under HG conditions by acting on SIRT1.ConclusionThis study proposes a promising approach to interpret the mechanisms of action of the MFN-miR-34a axis involved in DN. Our experimental results show that HG stimulation upregulated miR-34a and suppressed cell viability by upregulating apoptosis in podocytes. MFN attenuates HG-stimulated cell death in podocytes by downregulating miR-34a. Additionally, our data showed that SIRT1 expression was positively correlated with MFN treatment and inversely correlated with miR-34a expression.image
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Dihydromyricetin Alleviates High Glucose-Induced Oxidative Stress and Apoptosis in Human Retinal Pigment Epithelial Cells by Downregulating miR-34a Expression
    Li, Wenjun
    Xiao, Hongxia
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2021, 14 : 387 - 397
  • [42] Metformin protects human lens epithelial cells from high glucose-induced senescence and autophagy inhibition by upregulating SIRT1
    Yushan Fu
    Ruitong Wu
    Su Dong
    Jianfeng Chen
    Nan Zhou
    Graefe's Archive for Clinical and Experimental Ophthalmology, 2024, 262 : 477 - 485
  • [43] Cyanidin-3-O-glucoside attenuates high glucose-induced podocyte dysfunction by inhibiting apoptosis and promoting autophagy via activation of SIRT1/AMPK pathway
    Wang, Shu
    Huang, Yuqing
    Luo, Guangyan
    Yang, Xin
    Huang, Wei
    CANADIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY, 2021, 99 (06) : 589 - 598
  • [44] Metformin protects human lens epithelial cells from high glucose-induced senescence and autophagy inhibition by upregulating SIRT1
    Fu, Yushan
    Wu, Ruitong
    Dong, Su
    Chen, Jianfeng
    Zhou, Nan
    GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2024, 262 (02) : 477 - 485
  • [45] Resveratrol alleviates high glucose-induced oxidative stress and apoptosis in rat cardiac microvascular endothelial cell through AMPK/Sirt1 activation
    Li, Jinyu
    Feng, Zikai
    Lu, Binger
    Fang, Xinzhe
    Huang, Danmei
    Wang, Bin
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2023, 34
  • [46] High glucose-induced microRNA-155 promotes endothelial senescence in HUVECs through targeting SIRT1
    Guo, Q. Y.
    Zhang, E. L.
    Zhang, B.
    Zhang, X. Y.
    Wu, D. W.
    Yang, Z. H.
    Wu, Y. J.
    EUROPEAN HEART JOURNAL, 2016, 37 : 1105 - 1105
  • [47] Roles of SIRT1 in High Glucose-induced Endothelial Impairment: Association with Diabetic Atherosclerosis
    Yang, Juhong
    Wang, Nan
    Zhu, Yu
    Feng, Ping
    ARCHIVES OF MEDICAL RESEARCH, 2011, 42 (05) : 354 - 360
  • [48] Metformin promotes proliferation and suppresses apoptosis in Ox-LDL stimulated macrophages by regulating the miR-34a/Bcl2 axis
    Feng, Liuliu
    Liu, Tianhua
    Yang, Yuya
    Xiao, Wenying
    Shi, Jun
    Mei, Xiang
    Tian, Songmei
    Liu, Xinbing
    Huang, Hongman
    Bai, Yanyan
    RSC ADVANCES, 2019, 9 (26): : 14670 - 14676
  • [49] LncRNA MIAT Inhibits MPP+-Induced Neuronal Damage Through Regulating the miR-132/SIRT1 Axis in PC12 Cells
    Xiaoni Xu
    Yajun Zhang
    Yonggang Kang
    Shujuan Liu
    Yarong Wang
    Yinxia Wang
    Lin Wang
    Neurochemical Research, 2021, 46 : 3365 - 3374
  • [50] LncRNA MIAT Inhibits MPP+-Induced Neuronal Damage Through Regulating the miR-132/SIRT1 Axis in PC12 Cells
    Xu, Xiaoni
    Zhang, Yajun
    Kang, Yonggang
    Liu, Shujuan
    Wang, Yarong
    Wang, Yinxia
    Wang, Lin
    NEUROCHEMICAL RESEARCH, 2021, 46 (12) : 3365 - 3374