APPROXIMATION BY AN EXPONENTIAL-TYPE COMPLEX OPERATORS

被引:0
|
作者
Gal, Sorin G. [1 ,2 ]
Gupta, Vijay [3 ]
机构
[1] Univ Oradea, Dept Math & Comp Sci, Oradea 410087, Romania
[2] Acad Romanian Scientists, Splaiul Independentei 54, Bucharest 050094, Romania
[3] Netaji Subhas Univ Technol, Dept Math, Sect 3 Dwarka, New Delhi 110078, India
来源
KRAGUJEVAC JOURNAL OF MATHEMATICS | 2023年 / 47卷 / 05期
关键词
Complex exponential kind operator; approximation properties; upper estimate; Voronovskaya-type formula; exact estimate;
D O I
10.46793/KgJMat2305.691G
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we discuss the approximation properties of a complex exponential kind operator. Upper estimate, Voronovskaya-type formula and exact estimate are obtained.
引用
收藏
页码:691 / 700
页数:10
相关论文
共 50 条
  • [31] A MODEL FOR TOEPLITZ-OPERATORS IN THE SPACE OF ENTIRE-FUNCTIONS OF EXPONENTIAL-TYPE
    NGUON, D
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1993, 121 (01): : 1 - 12
  • [32] A GENERALIZED EXPONENTIAL-TYPE DISTRIBUTION
    Provost, Serge B.
    Mabrouk, I.
    PAKISTAN JOURNAL OF STATISTICS, 2010, 26 (01): : 97 - 110
  • [33] MULTIVARIATE EXPONENTIAL-TYPE DISTRIBUTIONS
    BILDIKAR, S
    PATIL, GP
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (04): : 1316 - &
  • [34] A CHARACTERIZATION OF EXPONENTIAL-TYPE DISTRIBUTION
    PATIL, GP
    BIOMETRIKA, 1963, 50 (1-2) : 205 - &
  • [35] Approximation by exponential sampling type neural network operators
    Shivam Bajpeyi
    A. Sathish Kumar
    Analysis and Mathematical Physics, 2021, 11
  • [36] Convergence Estimates of a Family of Approximation Operators of Exponential Type
    Gupta, Vijay
    Lopez-Pellicer, Manuel
    Srivastava, H. M.
    FILOMAT, 2020, 34 (13) : 4329 - 4341
  • [37] Approximation by exponential sampling type neural network operators
    Bajpeyi, Shivam
    Kumar, A. Sathish
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (03)
  • [38] DUALITY AND CONVOLUTION-OPERATORS IN CERTAIN SPACES OF EXPONENTIAL-TYPE ENTIRELY NUCLEAR FUNCTIONS
    OUERDIANE, H
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 1983, 53 : 276 - 283
  • [39] On an Exponential-Type Fuzzy Difference Equation
    Stefanidou, G.
    Papaschinopoulos, G.
    Schinas, C. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [40] Eigenvalue Problems for Exponential-Type Kernels
    Cai, Difeng
    Vassilevski, Panayot S.
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (01) : 61 - 78