Synthesis and anisotropic magnetic properties of LiCrTe2 single crystals with a triangular-lattice antiferromagnetic structure

被引:7
|
作者
Witteveen, Catherine [1 ,2 ]
Nocerino, Elisabetta [3 ]
Lopez-Paz, Sara A. [1 ]
Jeschke, Harald O. [4 ]
Pomjakushin, Vladimir Y. [3 ]
Mansson, Martin [5 ]
von Rohr, Fabian O. [1 ]
机构
[1] Univ Geneva, Dept Quantum Matter Phys, Quai Ernest Ansermet 24, CH-1211 Geneva, Switzerland
[2] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland
[4] Okayama Univ, Res Inst Interdisciplinary Sci, Okayama 7008530, Japan
[5] KTH Royal Inst Technol, Dept Appl Phys, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden
来源
JOURNAL OF PHYSICS-MATERIALS | 2023年 / 6卷 / 03期
基金
瑞典研究理事会; 瑞士国家科学基金会;
关键词
two-dimensional materials; magnetism; magnetic anisotropy; single crystal growth; SUPERCONDUCTIVITY; FERROMAGNETISM; SULFIDES;
D O I
10.1088/2515-7639/acd27a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the synthesis of LiCrTe2 single crystals and on their anisotropic magnetic properties. We have obtained these single crystals by employing a Te/Li-flux synthesis method. We find LiCrTe2 to crystallize in a TlCdS2 -type structure with cell parameters of a = 3.9512(5) angstrom and c = 6.6196(7) angstrom at T = 175 K. The content of lithium in these crystals was determined to be neary stoichiometric by means of neutron diffraction. We find a pronounced magnetic transition at T-N(ab) = 144 K and T-N(c) = 148 K, respectively. These transition temperatures are substantially higher than earlier reports on polycrystalline samples. We have performed neutron powder diffraction measurements that reveal that the long-range low-temperature magnetic structure of single crystalline LiCrTe2 is an A-type antiferromagnetic structure. Our DFT calculations are in good agreement with these experimental observations. We find the system to be easy axis with moments oriented along the c-direction experimentally as well as in our calculations. Thereby, the magnetic Hamiltonian can be written as H = H-Heisenberg + Sigma(i) K-c(S-i(z))(2) with K-c = -0.34 K (where |S-z| = 3/2). We find LiCrTe2 to be highly anisotropic, with a pronounced metamagnetic transition for H perpendicular to ab with a critical field of mu H-MM(5 K) approximate to 2.5 T. Using detailed orientation-dependent magnetization measurements, we have determined the magnetic phase diagram of this material. Our findings suggest that LiCrTe2 is a promising material for exploring the interplay between crystal structure and magnetism, and could have potential applications in spin-based 2D devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Stripe-yz magnetic order in the triangular-lattice antiferromagnet KCeS2
    Kulbakov, Anton A.
    Avdoshenko, Stanislav M.
    Puente-Orench, Ines
    Deeb, Mahmoud
    Doerr, Mathias
    Schlender, Philipp
    Doert, Thomas
    Inosov, Dmytro S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (42)
  • [32] Hidden magnetic order in the triangular-lattice magnet Li2MnTeO6
    Zvereva, E. A.
    Raganyan, G., V
    Vasilchikova, T. M.
    Nalbandyan, V. B.
    Gafurov, D. A.
    Vavilova, E. L.
    Zakharov, K., V
    Koo, H-J
    Pomjakushin, V. Yu
    Susloparova, A. E.
    Kurbakov, A., I
    Vasiliev, A. N.
    Whangbo, M-H
    PHYSICAL REVIEW B, 2020, 102 (09)
  • [33] A-type antiferromagnetic order and magnetic phase diagram of the trigonal Eu spin-7/2 triangular-lattice compound EuSn2As2
    Pakhira, Santanu
    Tanatar, M. A.
    Heitmann, Thomas
    Vaknin, David
    Johnston, D. C.
    PHYSICAL REVIEW B, 2021, 104 (17)
  • [34] Stripe magnetic order in semimetallic triangular-lattice CeLi3Bi2
    Bordelon, M. M.
    Yamamoto, R.
    Ajeesh, M. O.
    Girod, C.
    Wampler, J.
    Sherpa, P.
    Dioguardi, A. P.
    Thompson, J. D.
    Calder, S.
    Zapf, V.
    Ronning, F.
    Thomas, S. M.
    Bauer, E. D.
    Hirata, M.
    Rosa, P. F. S.
    PHYSICAL REVIEW B, 2025, 111 (09)
  • [35] Ultrahigh magnetic field phases in the frustrated triangular-lattice magnet CuCrO2
    Miyata, Atsuhiko
    Portugall, Oliver
    Nakamura, Daisuke
    Ohgushi, Kenya
    Takeyama, Shojiro
    PHYSICAL REVIEW B, 2017, 96 (18)
  • [36] Single-site magnetic anisotropy governed by interlayer cation charge imbalance in triangular-lattice AYbX2
    Zangeneh, Ziba
    Avdoshenko, Stanislav
    van den Brink, Jeroen
    Hozoi, Liviu
    PHYSICAL REVIEW B, 2019, 100 (17)
  • [37] Spin dynamics in ordered phases of the anisotropic triangular-lattice antiferromagnet Cs2CoBr4
    Soldatov, T. A.
    Smirnov, A. I.
    Syromyatnikov, A. V.
    PHYSICAL REVIEW B, 2023, 108 (18)
  • [38] Anisotropic field-induced ordering in the triangular-lattice quantum spin liquid NaYbSe2
    Ranjith, K. M.
    Luther, S.
    Reimann, T.
    Schmidt, B.
    Schlender, Ph
    Sichelschmidt, J.
    Yasuoka, H.
    Strydom, A. M.
    Skourski, Y.
    Wosnitza, J.
    Kuehne, H.
    Doert, Th
    Baenitz, M.
    PHYSICAL REVIEW B, 2019, 100 (22)
  • [39] MAGNETIC PHASE-TRANSITIONS IN TRIANGULAR-LATTICE ANTIFERROMAGNETIC MIXED-CRYSTALS CSNI0.98M0.02CL3 (M=CO, FE, MG)
    TAKEUCHI, J
    WADA, T
    HIROMITSU, I
    ITO, T
    SOLID STATE COMMUNICATIONS, 1993, 87 (10) : 899 - 901
  • [40] MAGNETIC PHASE-TRANSITIONS IN TRIANGULAR-LATTICE ANTIFERROMAGNETIC MIXED-CRYSTALS CSNI(1-X)M(X)CL(3) (M=CO, FE)
    TAKEUCHI, J
    MURAKAMI, K
    HIROMITSU, I
    ITO, T
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 140 : 1751 - 1752