Synthesis and anisotropic magnetic properties of LiCrTe2 single crystals with a triangular-lattice antiferromagnetic structure

被引:7
|
作者
Witteveen, Catherine [1 ,2 ]
Nocerino, Elisabetta [3 ]
Lopez-Paz, Sara A. [1 ]
Jeschke, Harald O. [4 ]
Pomjakushin, Vladimir Y. [3 ]
Mansson, Martin [5 ]
von Rohr, Fabian O. [1 ]
机构
[1] Univ Geneva, Dept Quantum Matter Phys, Quai Ernest Ansermet 24, CH-1211 Geneva, Switzerland
[2] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] Paul Scherrer Inst, Lab Neutron Scattering & Imaging, CH-5232 Villigen, Switzerland
[4] Okayama Univ, Res Inst Interdisciplinary Sci, Okayama 7008530, Japan
[5] KTH Royal Inst Technol, Dept Appl Phys, Roslagstullsbacken 21, SE-10691 Stockholm, Sweden
来源
JOURNAL OF PHYSICS-MATERIALS | 2023年 / 6卷 / 03期
基金
瑞典研究理事会; 瑞士国家科学基金会;
关键词
two-dimensional materials; magnetism; magnetic anisotropy; single crystal growth; SUPERCONDUCTIVITY; FERROMAGNETISM; SULFIDES;
D O I
10.1088/2515-7639/acd27a
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report on the synthesis of LiCrTe2 single crystals and on their anisotropic magnetic properties. We have obtained these single crystals by employing a Te/Li-flux synthesis method. We find LiCrTe2 to crystallize in a TlCdS2 -type structure with cell parameters of a = 3.9512(5) angstrom and c = 6.6196(7) angstrom at T = 175 K. The content of lithium in these crystals was determined to be neary stoichiometric by means of neutron diffraction. We find a pronounced magnetic transition at T-N(ab) = 144 K and T-N(c) = 148 K, respectively. These transition temperatures are substantially higher than earlier reports on polycrystalline samples. We have performed neutron powder diffraction measurements that reveal that the long-range low-temperature magnetic structure of single crystalline LiCrTe2 is an A-type antiferromagnetic structure. Our DFT calculations are in good agreement with these experimental observations. We find the system to be easy axis with moments oriented along the c-direction experimentally as well as in our calculations. Thereby, the magnetic Hamiltonian can be written as H = H-Heisenberg + Sigma(i) K-c(S-i(z))(2) with K-c = -0.34 K (where |S-z| = 3/2). We find LiCrTe2 to be highly anisotropic, with a pronounced metamagnetic transition for H perpendicular to ab with a critical field of mu H-MM(5 K) approximate to 2.5 T. Using detailed orientation-dependent magnetization measurements, we have determined the magnetic phase diagram of this material. Our findings suggest that LiCrTe2 is a promising material for exploring the interplay between crystal structure and magnetism, and could have potential applications in spin-based 2D devices.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Nuclear and magnetic spin structure of the antiferromagnetic triangular lattice compound LiCrTe2 investigated by μ+SR, neutron and X-ray diffraction
    Nocerino, E.
    Witteveen, C.
    Kobayashi, S.
    Forslund, O. K.
    Matsubara, N.
    Zubayer, A.
    Mazza, F.
    Kawaguchi, S.
    Hoshikawa, A.
    Umegaki, I.
    Sugiyama, J.
    Yoshimura, K.
    Sassa, Y.
    von Rohr, F. O.
    Mansson, M.
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [2] Magnetic structure of the conductive triangular-lattice antiferromagnet PdCrO2
    Takatsu, Hiroshi
    Nenert, Gwilherm
    Kadowaki, Hiroaki
    Yoshizawa, Hideki
    Enderle, Mechthild
    Yonezawa, Shingo
    Maeno, Yoshiteru
    Kim, Jungeun
    Tsuji, Naruki
    Takata, Masaki
    Zhao, Yang
    Green, Mark
    Broholm, Collin
    PHYSICAL REVIEW B, 2014, 89 (10)
  • [3] Magnetic properties of the triangular-lattice multilayer antiferromagnet with single-site anisotropy
    Dong, ZH
    Gu, SW
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2000, 12 (12) : 2819 - 2824
  • [4] Diluting a triangular-lattice spin liquid: Synthesis and characterization of NaYb1-xLuxS2 single crystals
    Haeussler, Ellen
    Sichelschmidt, Joerg
    Baenitz, Michael
    Andrade, Eric C.
    Vojta, Matthias
    Doert, Thomas
    PHYSICAL REVIEW MATERIALS, 2022, 6 (04):
  • [5] High field magnetic properties of the triangular-lattice antiferromagnet AgCrS2
    Li, Hexuan
    Gao, Wenshuai
    Shi, Liran
    Ouyang, Zhongwen
    Xia, Zhengcai
    Wang, Zhe
    Liu, Bingjie
    Zou, Youming
    Yu, Lu
    Zhang, Lei
    Pi, Li
    Qu, Zhe
    Zhang, Yuheng
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 489
  • [6] Crossover effect in triangular-lattice antiferromagnetic mixed crystals CsNi1-xFexCl3
    Takeuchi, J
    Katayama, N
    Fujiwara, K
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 2051 - 2052
  • [7] Antiferromagnetic Heisenberg model on an anisotropic triangular lattice in the presence of a magnetic field
    Shen, SQ
    Zhang, FC
    PHYSICAL REVIEW B, 2002, 66 (17) : 1 - 4
  • [8] Magnetic phase transitions in triangular-lattice antiferromagnetic mixed crystals CsNi1-xMxCl3 (M = Co, Fe)
    Takeuchi, J.
    Murakami, K.
    Hiromitsu, I.
    Ito, T.
    Journal of Magnetism and Magnetic Materials, 1995, 140-144 (pt 3): : 1751 - 1752
  • [9] Electrical transport and magnetic properties of the triangular-lattice compound Zr2NiP2
    Wan, Zongtang
    Zhao, Yuqian
    Liu, Jiabin
    Li, Yuesheng
    CHEMICAL PHYSICS LETTERS, 2022, 804
  • [10] Temperature dependence of the magnetic susceptibility for triangular-lattice antiferromagnets with spatially anisotropic exchange constants
    Zheng, WH
    Singh, RRP
    McKenzie, RH
    Coldea, R
    PHYSICAL REVIEW B, 2005, 71 (13)