A note on stability and fractal dimension of bivariate α-fractal functions

被引:6
|
作者
Agrawal, V. [1 ]
Som, T. [1 ]
Verma, S. [2 ]
机构
[1] IIT BHU, Dept Math, Varanasi 221005, India
[2] IIIT Allahabad, Dept Appl Sci, Allahabad 211015, India
关键词
Fractal interpolation surfaces; Bivariate alpha-fractal functions; Continuous dependence; Box dimension; Oscillation spaces; INTERPOLATION FUNCTIONS; MINKOWSKI DIMENSION; CONSTRUCTION; PHYSIOLOGY; SURFACES;
D O I
10.1007/s11075-022-01490-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the continuous dependence of the so-called (bivariate) alpha -fractal function on the parameters such as the scaling function alpha net delta of rectangular grid, and the base function S involved in its construction. Furthermore, we establish some results regarding its dimension.
引用
收藏
页码:1811 / 1833
页数:23
相关论文
共 50 条
  • [41] Fractal Dimension of Fractional Integral of Continuous Functions
    Du, Junhuai
    Xiao, Wei
    Liang, Yongshun
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 7838 - 7844
  • [42] On bivariate fractal approximation
    Agrawal, Vishal
    Som, Tanmoy
    Verma, S.
    JOURNAL OF ANALYSIS, 2022, 30 (04): : 1765 - 1783
  • [43] Approximation of bivariate Lipschitz continuous functions by hidden variable fractal functions
    Nallapu, Vijender
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [44] On bivariate fractal approximation
    Vishal Agrawal
    Tanmoy Som
    S. Verma
    The Journal of Analysis, 2022, 30 : 1765 - 1783
  • [45] Fractal Dimension of Color Fractal Images
    Ivanovici, Mihai
    Richard, Noel
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (01) : 227 - 235
  • [46] Fractal dimension estimators for a fractal process
    Morita, T
    Sato, K
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2005, 46 (03) : 631 - 637
  • [47] Fractal dimension of semiconducting fractal sensors
    Danik, G
    Gorobets, NN
    Tolstaya, AA
    Timonyk, VA
    14th International Crimean Conference: Microwave & Telecommunication Technology, Conference Proceedings, 2004, : 570 - 571
  • [48] NOTE ON THE FRACTAL DIMENSION OF HARD-SPHERE TRAJECTORIES
    ERPENBECK, JJ
    COHEN, EGD
    JOURNAL OF STATISTICAL PHYSICS, 1986, 43 (1-2) : 343 - 347
  • [49] A note on the fractal dimension of attractors of dissipative dynamical systems
    Chepyzhov, VV
    Ilyin, AA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (06) : 811 - 819
  • [50] Numerical integration of bivariate fractal interpolation functions on rectangular domains
    Aparna, M. P.
    Paramanathan, P.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2023, 232 (07): : 1027 - 1041