SAT-GCN: Self-attention graph convolutional network-based 3D object detection for autonomous driving

被引:57
|
作者
Wang, Li [1 ,2 ]
Song, Ziying [3 ]
Zhang, Xinyu [1 ,2 ]
Wang, Chenfei [1 ,2 ]
Zhang, Guoxin [4 ]
Zhu, Lei [5 ]
Li, Jun [1 ,2 ]
Liu, Huaping [6 ,7 ]
机构
[1] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Sch Vehicle & Mobil, Beijing 100084, Peoples R China
[3] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
[4] Hebei Univ Sci & Technol, Sch Informat Sci & Engn, Shijiazhuang 050018, Peoples R China
[5] Mogo Auto Intelligence & Telemet Informat Technol, Beijing 100013, Peoples R China
[6] Tsinghua Univ, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
[7] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
3D object detection; Graph convolutional network; Self-attention mechanism; VEHICLE DETECTION; POINT CLOUD; LIDAR;
D O I
10.1016/j.knosys.2022.110080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate 3D object detection from point clouds is critical for autonomous vehicles. However, point cloud data collected by LiDAR sensors are inherently sparse, especially at long distances. In addition, most existing 3D object detectors extract local features and ignore interactions between features, producing weak semantic information that significantly limits detection performance. We propose a self-attention graph convolutional network (SAT-GCN), which utilizes a GCN and self-attention to enhance semantic representations by aggregating neighborhood information and focusing on vital relationships. SAT-GCN consists of three modules: vertex feature extraction (VFE), self-attention with dimension reduction (SADR), and far distance feature suppression (FDFS). VFE extracts neighboring relationships between features using GCN after encoding a raw point cloud. SADR performs further weight augmentation for crucial neighboring relationships through self-attention. FDFS suppresses meaningless edges formed by sparse point cloud distributions in remote areas and generates corre-sponding global features. Extensive experiments are conducted on the widely used KITTI and nuScenes 3D object detection benchmarks. The results demonstrate significant improvements in mainstream methods, PointPillars, SECOND, and PointRCNN, improving the mean of AP 3D by 4.88%, 5.02%, and 2.79% on KITTI test dataset. SAT-GCN can boost the detection accuracy of the point cloud, especially at medium and long distances. Furthermore, adding the SAT-GCN module has a limited impact on the real-time performance and model parameters.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection
    Bhattacharyya, Prarthana
    Huang, Chengjie
    Czarnecki, Krzysztof
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 3022 - 3031
  • [22] GCN-MHSA: A novel malicious traffic detection method based on graph convolutional neural network and multi-head self-attention mechanism
    Chen, Jinfu
    Xie, Haodi
    Cai, Saihua
    Song, Luo
    Geng, Bo
    Guo, Wuhao
    COMPUTERS & SECURITY, 2024, 147
  • [23] Transfer learning based graph convolutional network with self-attention mechanism for abnormal electricity consumption detection
    Meng, Songping
    Li, Chengdong
    Tian, Chongyi
    Peng, Wei
    Tian, Chenlu
    ENERGY REPORTS, 2023, 9 : 5647 - 5658
  • [24] RETRACTED: GA-RCNN:Graph self-attention feature extraction for 3D object detection (Retracted Article)
    Yi, Yangyang
    Yu, Long
    Tian, Shengwei
    Gao, Xuezhuang
    Li, Jie
    Zhao, Xingang
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (02) : 5175 - 5189
  • [25] Grid self-attention mechanism 3D object detection method based on raw point cloud
    Lu B.
    Sun Y.
    Yang Z.
    Tongxin Xuebao/Journal on Communications, 2023, 44 (10): : 72 - 84
  • [26] Graph Convolutional Network-based 3D Reconstruction of Art and Cultural Legacy
    Zheng D.
    Xie Y.
    Computer-Aided Design and Applications, 2024, 21 (S18): : 145 - 159
  • [27] Object tracking based on siamese network with 3D attention and multiple graph attention
    Yan, Shilei
    Qi, Yujuan
    Liu, Mengxue
    Wang, Yanjiang
    Liu, Baodi
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 235
  • [28] Hierarchical Graph Attention Based Multi-View Convolutional Neural Network for 3D Object Recognition
    Zeng, Hui
    Zhao, Tianmeng
    Cheng, Ruting
    Wang, Fuzhou
    Liu, Jiwei
    IEEE ACCESS, 2021, 9 (09): : 33323 - 33335
  • [29] Stereo RGB and Deeper LIDAR-Based Network for 3D Object Detection in Autonomous Driving
    He, Qingdong
    Wang, Zhengning
    Zeng, Hao
    Zeng, Yi
    Liu, Yijun
    Liu, Shuaicheng
    Zeng, Bing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 152 - 162
  • [30] 3D object detection based on image and LIDAR fusion for autonomous driving
    Chen G.
    Yi H.
    Mao Z.
    International Journal of Vehicle Information and Communication Systems, 2023, 8 (03) : 237 - 251