Reduced graphene oxide composite nanowood for solar-driven interfacial evaporation and electricity generation

被引:19
|
作者
Li, Zhijing [1 ]
Chen, Dakai [1 ,2 ]
Gao, Huan [1 ]
Xie, Huaqing [1 ,2 ]
Yu, Wei [1 ,2 ]
机构
[1] Shanghai Polytech Univ, Sch Energy & Mat, Shanghai 201209, Peoples R China
[2] Shanghai Polytech Univ, Shanghai Engn Res Ctr Adv Thermal Funct Mat, Shanghai 201209, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar -driven interfacial evaporation; Nanowood; Reduced graphene oxide; Electricity generation; WATER-EVAPORATION; EFFICIENT; WOOD; DESALINATION; STEAM; SUN;
D O I
10.1016/j.applthermaleng.2023.119985
中图分类号
O414.1 [热力学];
学科分类号
摘要
Solar-driven interfacial evaporation (SDIE) is considered one of the most promising technological approaches to solve the freshwater shortages. Based on renewable wood, we fabricated the nanowood loaded with reduced graphene oxide (RGO@Nanowood) with high SDIE performance. Its superior performance benefits from three aspects: Firstly, the cellulose network in nanowood treated by delignification contains many hydrophilic groups, which significantly improves the hydrophilicity and can combine with water molecules through hydrogen bonds to generate more activated water, thereby reducing the enthalpy of evaporation. Secondly, the photothermal conversion capability of RGO@Nanowood was significantly improved by loading RGO with an impregnation -reduction method. Finally, the 2D water supply strategy achieves an ideal balance of water transport and thermal management and controls the water content within the pore channels to expose more evaporation space. Under simulated sunlight (1.0 kW m-2), the evaporation rate and evaporation efficiency of RGO@Nanowood were 2.26 kg m- 2h-1 and 92.71 %, respectively. In the outdoor experiment, the daily freshwater production of 6.39 kg m- 2 was obtained on sunny days. Furthermore, the hydroelectric effect of RGO@Nanowood under solar -driven evaporation proved its potential for power generation applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] PVA/cellulose hydrogel with asymmetric distribution of MoS2 for highly efficient solar-driven interfacial evaporation and electricity generation
    Wang, Xinyang
    Yin, Siyuan
    Liu, Jiurui
    Lu, Shizhou
    Song, Bo
    DESALINATION, 2024, 588
  • [32] The highly stable titanium oxide ceramics with solar-driven interfacial evaporation and photocatalysis dualfunction
    Chen, Lei
    Yao, Dongxu
    Zhu, Ming
    Zhao, Jun
    Xia, Yongfeng
    Zeng, Yu-Ping
    CHEMICAL ENGINEERING JOURNAL, 2025, 504
  • [33] Highly salt-resistant organic-inorganic composite as a solar-driven interfacial evaporator for desalination and electricity generation
    Sang, Hankui
    Tang, Congming
    Ma, Kai
    Li, Xinli
    JOURNAL OF WATER PROCESS ENGINEERING, 2023, 56
  • [34] Advancing Efficiency in Solar-Driven Interfacial Evaporation: Strategies and Applications
    Hou, Lanlan
    Li, Shuai
    Qi, Yingqun
    Liu, Jingchong
    Cui, Zhimin
    Liu, Xiaofei
    Zhang, Ying
    Wang, Nu
    Zhao, Yong
    ACS NANO, 2025, 19 (10) : 9636 - 9683
  • [35] Towards highly efficient solar-driven interfacial evaporation for desalination
    Liu, Xinghang
    Mishra, Debesh Devadutta
    Wang, Xianbao
    Peng, Hongyan
    Hu, Chaoquan
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (35) : 17907 - 17937
  • [36] Solar-driven interfacial evaporation: Research advances in structural design
    Sun, Yuqing
    Tan, Xinyan
    Yuan, Xin
    Li, Jian
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [37] Numerical Simulation Technologies in Solar-Driven Interfacial Evaporation Processes
    Wei, Yumeng
    Yang, Yawei
    Zhao, Qi
    Ma, Yong
    Qiang, Mengyuan
    Fu, Linjing
    Liu, Yihong
    Zhang, Jianfei
    Qu, Zhiguo
    Que, Wenxiu
    SMALL, 2024, 20 (32)
  • [38] Spent coffee ground-based cellulose nanofiber/ reduced graphene oxide aerogel for efficient solar-driven interfacial evaporation via directional freezing technology
    Luo, Xinjie
    Zhou, Li
    Wang, Yu
    Xiang, Jian
    Zhang, Hongfei
    Tao, Rao
    Li, Jun
    Wang, Baoling
    Chen, Renjie
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 214
  • [39] Recent research advances in efficient solar-driven interfacial evaporation
    Zhou, Mingyu
    Zhang, Lijing
    Tao, Shengyang
    Li, Renyuan
    Wang, Yuchao
    CHEMICAL ENGINEERING JOURNAL, 2024, 489
  • [40] Solar-driven interfacial evaporation: materials design and device assembly
    Balu, Satheesh kumar
    Cheng, Sijie
    Latthe, Sanjay S.
    Xing, Ruimin
    Liu, Shanhu
    ENERGY MATERIALS, 2024, 4 (02):