Global Attractors for a Class of Discrete Dynamical Systems

被引:1
|
作者
Bonotto, Everaldo de Mello [1 ]
Uzal, Jose Manuel [2 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Campus Sao Carlos,Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Complutense Madrid, Fac Ciencias Matemat, Dept Anal Matemat & Matemat Aplicada, Madrid 28040, Spain
关键词
Discrete dynamical systems; Impulsive dynamical systems; Global attractors;
D O I
10.1007/s10884-024-10356-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of global attractors for a class of discrete dynamical systems naturally originated from impulsive dynamical systems. We establish sufficient conditions for the existence of a discrete global attractor. Moreover, we investigate the relationship among different types of global attractors, i.e., the attractor A of a continuous dynamical system, the attractor A of an impulsive dynamical system and the attractor A of a discrete dynamical system. Two applications are presented, one involving an integrate-and-fire neuron model, and the other involving a nonlinear reaction-diffusion initial boundary value problem.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] The Lie symmetry intrinsicality of a class of discrete dynamical systems
    Jiang, ZH
    GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, : 350 - 354
  • [33] A note on discrete dynamical systems in theories of class S
    Michele Cirafici
    Journal of High Energy Physics, 2021
  • [34] On boundaries of attractors in dynamical systems
    Niralda, Nitha P. C.
    Mathew, Sunil
    Secelean, Nicolae Adrian
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 94
  • [35] Attractors and basins of dynamical systems
    Denes, Attila
    Makay, Geza
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2011, (20) : 1 - 11
  • [36] Attractors of ensembles of dynamical systems
    Bobylev, NA
    Zalozhnev, AY
    Klykov, AY
    AUTOMATION AND REMOTE CONTROL, 1999, 60 (02) : 149 - 155
  • [37] Attractors for lattice dynamical systems
    Bates, PW
    Lu, KN
    Wang, BX
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (01): : 143 - 153
  • [38] On the connectedness of attractors for dynamical systems
    Gobbino, M
    Sardella, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (01) : 1 - 14
  • [39] Hidden attractors in dynamical systems
    Dudkowski, Dawid
    Jafari, Sajad
    Kapitaniak, Tomasz
    Kuznetsov, Nikolay V.
    Leonov, Gennady A.
    Prasad, Awadhesh
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 637 : 1 - 50
  • [40] Global bifurcation of homoclinic trajectories of discrete dynamical systems
    Pejsachowicz, Jacobo
    Skiba, Robert
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2012, 10 (06): : 2088 - 2109