Vision Transformer for Parkinson's Disease Classification using Multilingual Sustained Vowel Recordings

被引:3
|
作者
Hemmerling, Daria [1 ]
Wodzinski, Marek [1 ,2 ]
Orozco-Arroyave, Juan Rafael [3 ,4 ]
Sztaho, David [5 ]
Daniol, Mateusz [1 ]
Jemiolo, Pawel [1 ]
Wojcik-Pedziwiatr, Magdalena [6 ]
机构
[1] AGH Univ Sci & Technol, Fac Elect Engn Automat Comp Sci & Biomed Engn, Krakow, Poland
[2] Univ Appl Sci Western Switzerland, Inst Informat Syst, HES SO Valais, Sierre, Switzerland
[3] Univ Antioquia, Medellin, Colombia
[4] Univ Erlangen Nurnberg, Pattern Recognit Lab, Erlangen, Germany
[5] Budapest Univ Technol & Econ, Dept Telecommun & Media Informat, Budapest, Hungary
[6] Krakow Univ, Dept Neurol, Krakow, Poland
关键词
Deep Learning; Vision Transformer; Voice Processing; Neurodegenerative Diseases; Hypokinetic Dysarthria;
D O I
10.1109/EMBC40787.2023.10340478
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parkinson's disease (PD) is the 2(nd) most prevalent neurodegenerative disease in the world. Thus, the early detection of PD has recently been the subject of several scientific and commercial studies. In this paper, we propose a pipeline using Vision Transformer applied to mel-spectrograms for PD classification using multilingual sustained vowel recordings. Furthermore, our proposed transformed-based model shows a great potential to use voice as a single modality biomarker for automatic PD detection without language restrictions, a wide range of vowels, with an F1-score equal to 0.78. The results of our study fall within the range of the estimated prevalence of voice and speech disorders in Parkinson's disease, which ranges from 70-90%. Our study demonstrates a high potential for adaptation in clinical decision-making, allowing for increasingly systematic and fast diagnosis of PD with the potential for use in telemedicine.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] InViTMixup: plant disease classification using convolutional vision transformer with Mixup augmentation
    Devi, R. S. Sandhya
    Kumar, V. R. Vijay
    Sivakumar, P.
    JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2024, 47 (05) : 520 - 527
  • [22] Stroke Disease Classification Using CT Scan Image with Vision Transformer Method
    Yopiangga, Alfian Prisma
    Badriyah, Tessy
    Syarif, Iwan
    Sakinah, Nur
    2024 INTERNATIONAL ELECTRONICS SYMPOSIUM, IES 2024, 2024, : 436 - 441
  • [23] Vowel characteristics associated with Parkinson's disease in Cantonese
    Leung, N.
    Tong, E.
    Ng, M.
    MOVEMENT DISORDERS, 2018, 33 : S756 - S757
  • [24] Vowel articulation in Parkinson's disease - A longitudinal study
    Skodda, S.
    Wenke, G.
    Uwe, S.
    MOVEMENT DISORDERS, 2011, 26 : S199 - S199
  • [25] Vision Transformer Approach for Classification of Alzheimer's Disease Using 18F-Florbetaben Brain Images
    Shin, Hyunji
    Jeon, Soomin
    Seol, Youngsoo
    Kim, Sangjin
    Kang, Doyoung
    APPLIED SCIENCES-BASEL, 2023, 13 (06):
  • [26] Deep CNN for Parkinson's Disease Classification Using Line Spectral Frequency Images of Sustained Speech Phonation
    Kumari, Rani
    Ramachandran, Prakash
    IETE JOURNAL OF RESEARCH, 2025, 71 (01) : 341 - 358
  • [27] Classification of Parkinson's Disease Using NNge Classification Algorithm.
    Alqahtani, Ebtesam J.
    Alshamrani, Fatimah H.
    Syed, Hajra F.
    Olatunji, Sunday O.
    2018 21ST SAUDI COMPUTER SOCIETY NATIONAL COMPUTER CONFERENCE (NCC), 2018,
  • [28] Parkinson's Disease Detection from Voice Recordings Using Associative Memories
    Luna-Ortiz, Irving
    Aldape-Perez, Mario
    Uriarte-Arcia, Abril Valeria
    Rodriguez-Molina, Alejandro
    Alarcon-Paredes, Antonio
    Ventura-Molina, Elias
    HEALTHCARE, 2023, 11 (11)
  • [29] Detecting Parkinson's Disease Using Voice Recordings From Mobile Devices
    Momeni, Niloofar
    Whitling, Susanna
    Jakobsson, Andreas
    32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024, 2024, : 1516 - 1520
  • [30] Deep Brain Recordings Using an Implanted Pulse Generator in Parkinson's Disease
    Neumann, Wolf-Julian
    Staub, Franziska
    Horn, Andreas
    Schanda, Julia
    Mueller, Joerg
    Schneider, Gerd-Helge
    Brown, Peter
    Kuehn, Andrea A.
    NEUROMODULATION, 2016, 19 (01): : 20 - 23