Generative-Contrastive Graph Learning for Recommendation

被引:28
|
作者
Yang, Yonghui [1 ]
Wu, Zhengwei [2 ]
Wu, Le [1 ]
Zhang, Kun [1 ]
Hong, Richang [1 ]
Zhang, Zhiqiang [2 ]
Zhou, Jun [2 ]
Wang, Meng [1 ,3 ]
机构
[1] Hefei Univ Technol, Key Lab Knowledge Engn Big Data, Hefei, Peoples R China
[2] Ant Grp, Hangzhou, Peoples R China
[3] Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
Collaborative Filtering; Recommendation; Generative Learning; Graph Contrastive Learning;
D O I
10.1145/3539618.3591691
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
By treating users' interactions as a user-item graph, graph learning models have been widely deployed in Collaborative Filtering (CF) based recommendation. Recently, researchers have introduced Graph Contrastive Learning (GCL) techniques into CF to alleviate the sparse supervision issue, which first constructs contrastive views by data augmentations and then provides self-supervised signals by maximizing the mutual information between contrastive views. Despite the effectiveness, we argue that current GCL-based recommendation models are still limited as current data augmentation techniques, either structure augmentation or feature augmentation. First, structure augmentation randomly dropout nodes or edges, which is easy to destroy the intrinsic nature of the user-item graph. Second, feature augmentation imposes the same scale noise augmentation on each node, which neglects the unique characteristics of nodes on the graph. To tackle the above limitations, we propose a novel Variational Graph Generative-Contrastive Learning (VGCL) framework for recommendation. Specifically, we leverage variational graph reconstruction to estimate a Gaussian distribution of each node, then generate multiple contrastive views through multiple samplings from the estimated distributions, which builds a bridge between generative and contrastive learning. The generated contrastive views can well reconstruct the input graph without information distortion. Besides, the estimated variances are tailored to each node, which regulates the scale of contrastive loss for each node on optimization. Considering the similarity of the estimated distributions, we propose a cluster-aware twofold contrastive learning, a node-level to encourage consistency of a node's contrastive views and a cluster-level to encourage consistency of nodes in a cluster. Finally, extensive experimental results on three public datasets clearly demonstrate the effectiveness of the proposed model.
引用
收藏
页码:1117 / 1126
页数:10
相关论文
共 50 条
  • [21] Generative and contrastive graph representation learning with message passing
    Tang, Ying
    Yang, Yining
    Sun, Guodao
    NEURAL NETWORKS, 2025, 185
  • [22] Information-Controllable Graph Contrastive Learning for Recommendation
    Guo, Zirui
    Yu, Yanhua
    Wang, Yuling
    Lu, Kangkang
    Yang, Zixuan
    Pang, Liang
    Chua, Tat-Seng
    PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024, 2024, : 528 - 537
  • [23] MDGCL: Message Dropout Graph Contrastive Learning for Recommendation
    Xu, Qijia
    Li, Wei
    Chen, Jingxin
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14864 : 60 - 71
  • [24] Quaternion-Based Graph Contrastive Learning for Recommendation
    Fang, Yaxing
    Zhao, Pengpeng
    Xian, Xuefeng
    Fang, Junhua
    Liu, Guanfeng
    Liu, Yanchi
    Sheng, Victor S.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [25] Heterogeneous Graph Contrastive Learning with Attention Mechanism for Recommendation
    Li, Ruxing
    Yang, Dan
    Gong, Xi
    ENGINEERING LETTERS, 2024, 32 (10) : 1930 - 1938
  • [26] Mixed Augmentation Contrastive Learning for Graph Recommendation System
    Dong, Zhuolun
    Yang, Yan
    Zhong, Yingli
    WEB AND BIG DATA, APWEB-WAIM 2024, PT II, 2024, 14962 : 130 - 143
  • [27] Candidate-aware Graph Contrastive Learning for Recommendation
    He, Wei
    Sun, Guohao
    Lu, Jinhu
    Fang, Xiu Susie
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1670 - 1679
  • [28] SSGCL: Simple Social Recommendation with Graph Contrastive Learning
    Duan, Zhihua
    Wang, Chun
    Zhong, Wending
    MATHEMATICS, 2024, 12 (07)
  • [29] Contrastive Graph Semantic Learning via prototype for recommendation
    Wen, Mi
    Wang, Hongwei
    Li, Weiwei
    Fan, Zizhu
    Yu, Xiaoqing
    INFORMATION SCIENCES, 2025, 699
  • [30] Higher-Order Graph Contrastive Learning for Recommendation
    Zheng, ZhenZhong
    Li, Jianxin
    Wu, Xiaoming
    Liu, Xiangzhi
    Pei, Lili
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VI, DASFAA 2024, 2024, 14855 : 35 - 51