Nonparametric longitudinal regression model to analyze shape data using the Procrustes rotation

被引:0
|
作者
Moghimbeygi, Meisam [1 ]
Golalizadeh, Mousa [2 ]
机构
[1] Kharazmi Univ, Fac Math & Comp Sci, Dept Math, Tehran, Iran
[2] Tarbiat Modares Univ, Dept Stat, Tehran, Iran
关键词
Nonparametric inference; Kernel regression; Longitudinal model; Procrustes analysis; Shape analysis; SMOOTHING SPLINES;
D O I
10.1007/s42952-023-00241-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Shape, as an intrinsic concept, can be considered as a source of information in some statistical analysis contexts. For instance, one of the important topics in morphology is to study the shape changes along time. From a topological viewpoint, shape data are points on a particular manifold and so to construct a longitudinal model for treating shape variation is not as trivial as thought. Unlike using the common parametric models to do such a task, we invoke Procrustes analysis in the context of a nonparametric framework and propose a simple, yet useful, model to deal with shape changes. After conveying the problem into the nonparametric regression model, we utilize the weighted least squares method to estimates the related parameters. Also, we illustrate implementing this new model in simulation studies and analyzing two biological data sets. Our proposed model shows its superiority while compared with other counterpart models.
引用
收藏
页码:169 / 188
页数:20
相关论文
共 50 条
  • [21] Using the linear mixed model to analyze nonnormal data distributions in longitudinal designs
    Arnau, Jaume
    Bono, Roser
    Blanca, Mara J.
    Bendayan, Rebecca
    BEHAVIOR RESEARCH METHODS, 2012, 44 (04) : 1224 - 1238
  • [22] Equivalent kernels of smoothing splines in nonparametric regression for clustered/longitudinal data
    Lin, XH
    Wang, NY
    Welsh, AH
    Carroll, RJ
    BIOMETRIKA, 2004, 91 (01) : 177 - 193
  • [23] Histospline method in nonparametric regression models with application to clustered longitudinal data
    Carroll, RJ
    Hall, P
    Apanasovich, TV
    Lin, XH
    STATISTICA SINICA, 2004, 14 (03) : 649 - 674
  • [24] A framework for longitudinal data analysis via shape regression
    Fishbaugh, James
    Durrleman, Stanley
    Piven, Joseph
    Gerig, Guido
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [25] Using a Gaussian Process as a Nonparametric Regression Model
    Gattiker, J. R.
    Hamada, M. S.
    Higdon, D. M.
    Schonlau, M.
    Welch, W. J.
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2016, 32 (02) : 673 - 680
  • [26] A NONPARAMETRIC REGRESSION MODEL FOR PANEL COUNT DATA ANALYSIS
    Zhao, Huadong
    Zhang, Ying
    Zhao, Xingqiu
    Yu, Zhangsheng
    STATISTICA SINICA, 2019, 29 (02) : 809 - 826
  • [27] Using a longitudinal model to analyze drug compliance
    Gause, D.
    Lau, H.
    VALUE IN HEALTH, 2008, 11 (03) : A204 - A204
  • [28] Nonparametric predictive model for sparse and irregular longitudinal data
    Wang, Shixuan
    Kim, Seonjin
    Cho, Hyunkeun Ryan
    Chang, Won
    BIOMETRICS, 2024, 80 (01)
  • [29] Bayesian nonparametric latent class model for longitudinal data
    Koo, Wonmo
    Kim, Heeyoung
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (11) : 3381 - 3395
  • [30] Pneumonia Cases Modeling in Java']Java Island Using Two Estimators of Nonparametric Regression for Longitudinal Data
    Octavanny, Made Ayu Dwi
    Budiantara, I. Nyoman
    Kuswanto, Heri
    Rahmawati, Dyah Putri
    INTERNATIONAL CONFERENCE ON MATHEMATICS, COMPUTATIONAL SCIENCES AND STATISTICS 2020, 2021, 2329