Almost unbiased Liu-type estimator for Tobit regression and its application

被引:0
|
作者
Omara, Tarek M. [1 ]
机构
[1] Islamic Univ Madinah, Fac Sci, Dept Math, Medinah, Saudi Arabia
关键词
Almost unbiased estimator; Liu-type estimator; Maximum likelihood estimator; Multicollinearity; Tobit regression; RIDGE-REGRESSION; ERROR;
D O I
10.1080/03610918.2023.2257006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper introduces a new estimator for the Tobit regression model when the multicollinearity exists. This estimator is called almost unbiased Tobit Liu-Type estimator, which is obtained by a mixture between the Liu-Type estimator and almost unbiased estimator. This estimator avoids the negative effects of multicollinearity on the maximum likelihood estimator. Furthermore, we check the superiority of the new estimator over the maximum likelihood estimator, Liu-Type estimator and almost unbiased estimator according to the simulated mean square error SMSE criteria. In addition, we run the simulation study to investigate the effects of a group of factors on the performance of the new estimator. Finally, to check the benefits of the new estimator via the real data, we use two applications for the Tobit regression, the English Premier League data and Egyptian agricultural GDP data.
引用
收藏
页码:433 / 448
页数:16
相关论文
共 50 条
  • [31] A new improvement Liu-type estimator for the Bell regression model
    Ertan, Esra
    Algamal, Zakariya Yahya
    Erkoc, Ali
    Akay, Kadri Ulas
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2025, 54 (03) : 603 - 614
  • [32] A new Liu-type estimator for the Inverse Gaussian Regression Model
    Akram, Muhammad Nauman
    Amin, Muhammad
    Qasim, Muhammad
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) : 1153 - 1172
  • [33] Jackknifed Liu-type estimator in the negative binomial regression model
    Jabur, Dhafer Myasar
    Rashad, Nadwa Khazaal
    Algamal, Zakariya Yahya
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 2675 - 2684
  • [34] AN ALMOST UNBIASED LIU ESTIMATOR IN LINEAR REGRESSION MODEL WITH MEASUREMENT ERROR
    Wu, Jibo
    Shakoor, Abdul
    ADVANCES AND APPLICATIONS IN STATISTICS, 2015, 44 (01) : 77 - 85
  • [35] Comments on "On the weighted mixed Liu-type estimator under unbiased stochastic restrictions"
    Kaciranlar, Selahattin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (03) : 435 - 437
  • [36] Modified Restricted Almost Unbiased Liu Estimator in Linear Regression Model
    Wu, Jibo
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2016, 45 (02) : 689 - 700
  • [37] Liu-Type Multinomial Logistic Estimator
    Abonazel, Mohamed R.
    Farghali, Rasha A.
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 2019, 81 (02): : 203 - 225
  • [38] Liu-Type Multinomial Logistic Estimator
    Mohamed R. Abonazel
    Rasha A. Farghali
    Sankhya B, 2019, 81 : 203 - 225
  • [39] Liu-type estimator in Conway-Maxwell-Poisson regression model: theory, simulation and application
    Tanis, Caner
    Asar, Yasin
    STATISTICS, 2024, 58 (01) : 65 - 86
  • [40] Inverse Gaussian Liu-type estimator
    Bulut, Y. Murat
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (10) : 4864 - 4879