Coupling heat transfer study of liquid sodium and supercritical carbon dioxide in a PCHE straight channel based on a four-equation model

被引:6
|
作者
Su, Xing-Kang
Li, Xian-Wen [2 ,3 ]
Wang, Xiang-Yang
Chen, Qi-Jian [1 ]
Shi, Qian-Wan [1 ]
Qiu, Jing [1 ]
Gu, Long [1 ,2 ,3 ]
机构
[1] Lanzhou Univ, Sch Nucl Sci & Technol, Lanzhou 730000, Peoples R China
[2] Chinese Acad Sci, Inst Modern Phys, Lanzhou 730000, Peoples R China
[3] Univ Chinese Acad Sci, Sch Nucl Sci & Technol, Beijing 100049, Peoples R China
关键词
Liquid sodium; Supercritical carbon dioxide; PCHE; Coupling heat transfer; Four-equation model; TRANSFER TURBULENCE MODEL; PREDICTING FLUID-FLOW; NUMERICAL-SIMULATION; REATTACHING FLOWS; CONVERSION SYSTEM; CO2; REGION;
D O I
10.1016/j.anucene.2023.109976
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The Brayton cycle using supercritical carbon dioxide (S-CO2) as the working fluid is expected to be a thermopower conversion technology for sodium-cooled fast reactors. Printed Circuit Heat Exchanger (PCHE) is the key heat transport structure to realize the above technology. The study of conjugate heat transfer characteristics of sodium (Na) with low Prandtl number turbulent heat transfer characteristics and S-CO2 with supercritical convective heat transfer behaviors in a PCHE channel are of great significance. However, the constant turbulent Prandtl number (Prt) model obtained by the general Reynolds analogy hypothesis may affect the conjugate heat transfer assessment between Na and S-CO2. Compared with the constant Prt model, the fluid's Prt distribution can be obtained by four-equation models, introducing the transport of turbulent kinetic energy k, dissipation rate e of k, temperature fluctuation ko, and dissipation rate eo of ko. The four-equation model is expected to obtain more effective conjugate heat transfer characteristics between Na andS-CO2, while there are no available commercial codes. Therefore, in this paper, two kinds of four-equation model, which can effectively evaluate the heat transport performance of Na with low-Prandtl number and S-CO2 away from the pseudo-critical region, respectively, are first introduced into the conjugate heat transfer solver of OpenFOAM. Then the conjugate heat transfer experiment data of Na in a pipe and the simulation data of S-CO2 in a PCHE straight channel are used to verify the validity of the numerical model in this paper. The results show that the present calculation method can effectively reproduce the numerical conjugate heat transfer process of Na and S-CO2. Finally, based on fourequation models, the coupling heat exchange performance of Na/S-CO2 are studied to obtain the effects of mass rate and temperature on the conjugate heat transfer process between Na and S-CO2 in a PCHE straight channel.
引用
收藏
页数:16
相关论文
共 50 条
  • [11] Numerical study of heat transfer of wavy channel supercritical CO2 PCHE with various channel geometries
    Safari Y.
    Abdollahi S.A.
    Mahmoudi M.
    Safaei M.
    Taghinia F.
    Pasha P.
    Ganji D.D.
    International Journal of Thermofluids, 2023, 18
  • [12] Development and Assessment of an Isotropic Four-Equation Model for Heat Transfer of Low Prandtl Number Fluids
    Su, Xingkang
    Li, Xianwen
    Wang, Xiangyang
    Liu, Yang
    Chen, Qijian
    Shi, Qianwan
    Sheng, Xin
    Gu, Long
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [13] Numerical study on heat transfer deterioration of supercritical-pressure carbon dioxide in a square channel
    Wang Y.
    Li Y.
    Li H.
    Dong M.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2024, 50 (06): : 1888 - 1897
  • [14] An Experimental Study on Convective Heat Transfer of Supercritical Carbon Dioxide
    Lv Jing
    Wang Weifeng
    Zhou Chuanyu
    Zhao Huizhong
    Yu Guoqing
    ICEET: 2009 INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT TECHNOLOGY, VOL 1, PROCEEDINGS, 2009, : 18 - 22
  • [15] A numerical study on the convective heat transfer of supercritical carbon dioxide
    Satoh, T
    Saito, S
    Ajihara, Y
    Inomata, H
    KAGAKU KOGAKU RONBUNSHU, 1997, 23 (01) : 132 - 135
  • [16] Experimental and Numerical Study of Heat Transfer Characteristics of Supercritical CO2 in Rectangular Channel PCHE
    Chen, Yulin
    Wu, Xinwen
    Shao, Yingjuan
    Zhong, Wenqi
    JOURNAL OF THERMAL SCIENCE, 2024, 33 (06) : 2299 - 2317
  • [17] A low-Reynolds-number, four-equation heat transfer model for turbulent separated and reattaching flows
    Rhee, GH
    Sung, HJ
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1997, 18 (01) : 38 - 44
  • [18] Design and Heat Transfer Characteristics of 600MW Coal-based Supercritical Carbon Dioxide Cycle PCHE Pre-cooler
    Wu X.
    Shao Y.
    Zhong W.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2023, 43 (15): : 5916 - 5924
  • [19] Experimental study of the heat transfer of supercritical carbon dioxide in silica-based porous media
    Hsieh, J. C.
    Lee, B. H.
    Lin, David. T. W.
    Chung, M. C.
    INTERNATIONAL CONFERENCE ON APPLIED ENERGY, ICAE2014, 2014, 61 : 914 - 917
  • [20] Experimental study on heat transfer characteristics of supercritical carbon dioxide natural circulation
    Wang, Pengfei
    Ding, Peng
    Li, Wenhuai
    Xie, Rongshun
    Duan, Chengjie
    Hong, Gang
    Zhang, Yaoli
    NUCLEAR ENGINEERING AND TECHNOLOGY, 2022, 54 (03) : 867 - 876